A generalization of a theorem of von Neumann

IF 0.9 3区 数学 Q2 MATHEMATICS
Ali Bayati Eshkaftaki
{"title":"A generalization of a theorem of von Neumann","authors":"Ali Bayati Eshkaftaki","doi":"10.1007/s00010-024-01141-6","DOIUrl":null,"url":null,"abstract":"<div><p>In 1953 von Neumann proved that every <span>\\(n\\times n\\)</span> doubly substochastic matrix <i>A</i> can be <i>increased</i> to a doubly stochastic matrix, i.e., there is an <span>\\(n\\times n\\)</span> doubly stochastic matrix <i>D</i> for which <span>\\(A\\le D.\\)</span> In this paper, we will discuss this result for a class of <span>\\(I\\times I\\)</span> doubly substochastic matrices. In fact, by a constructive method, we find an equivalent condition for the existence of a doubly stochastic matrix <i>D</i> which satisfies <span>\\(A\\le D,\\)</span> for all <span>\\(A\\in {\\mathcal {A}},\\)</span> where <span>\\({\\mathcal { A}}\\)</span> is assumed to be a class of (finite or infinite) doubly substochastic matrices. Such a matrix <i>D</i> is called a cover of <span>\\(\\mathcal {A}.\\)</span> The uniqueness of the cover will also be discussed. Then we obtain an application of this concept to a system of (infinite) linear equations and inequalities.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 1","pages":"61 - 70"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01141-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1953 von Neumann proved that every \(n\times n\) doubly substochastic matrix A can be increased to a doubly stochastic matrix, i.e., there is an \(n\times n\) doubly stochastic matrix D for which \(A\le D.\) In this paper, we will discuss this result for a class of \(I\times I\) doubly substochastic matrices. In fact, by a constructive method, we find an equivalent condition for the existence of a doubly stochastic matrix D which satisfies \(A\le D,\) for all \(A\in {\mathcal {A}},\) where \({\mathcal { A}}\) is assumed to be a class of (finite or infinite) doubly substochastic matrices. Such a matrix D is called a cover of \(\mathcal {A}.\) The uniqueness of the cover will also be discussed. Then we obtain an application of this concept to a system of (infinite) linear equations and inequalities.

冯·诺伊曼定理的推广
1953年von Neumann证明了每一个\(n\times n\)双次随机矩阵A都可以化为一个双随机矩阵,即存在一个\(n\times n\)双随机矩阵D,对于该矩阵\(A\le D.\),本文将讨论一类\(I\times I\)双次随机矩阵的这一结果。事实上,通过构造方法,我们找到了一个双随机矩阵D存在的等价条件,该矩阵D对所有\(A\in {\mathcal {A}},\)满足\(A\le D,\),其中\({\mathcal { A}}\)被假设为一类(有限或无限)双次随机矩阵。这样的矩阵D称为\(\mathcal {A}.\)的盖,盖的唯一性也将被讨论。然后我们得到了这个概念在(无穷)线性方程和不等式系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信