Transcriptome analysis and reverse engineering verification of SNZ3Val125Ile and Pho3Asn134Asp revealed the mechanism of adaptive laboratory evolution to increase the yield of tyrosol in Saccharomyces cerevisiae strain S26-AE2
IF 6.1 1区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Na Song, Huili Xia, Xiaoxue Yang, Siyao Liu, Linglong Xu, Kun Zhuang, Lan Yao, Shihui Yang, Xiong Chen, Jun Dai
{"title":"Transcriptome analysis and reverse engineering verification of SNZ3Val125Ile and Pho3Asn134Asp revealed the mechanism of adaptive laboratory evolution to increase the yield of tyrosol in Saccharomyces cerevisiae strain S26-AE2","authors":"Na Song, Huili Xia, Xiaoxue Yang, Siyao Liu, Linglong Xu, Kun Zhuang, Lan Yao, Shihui Yang, Xiong Chen, Jun Dai","doi":"10.1186/s13068-025-02627-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Tyrosol is an important drug precursor, and <i>Saccharomyces cerevisiae</i> is one of the main microorganisms that produces tyrosol. Although excessive metabolic modification increases the production of tyrosol, it also causes a decrease in the growth rate of yeast. Therefore, this study attempted to restore the growth of <i>S. cerevisiae</i> through adaptive evolution and further improve tyrosol production.</p><h3>Results</h3><p>After the adaptive laboratory evolution of <i>S. cerevisiae</i> S26, three evolutionary strains were obtained. The biomass of strain S26-AE2 reached 17.82 g DCW/L in the presence of 100 g/L glucose, which was 15.33% higher than that of S26, and its tyrosol production reached 817.83 mg/L. The transcriptome analysis revealed that, upon exposure to 100 g/L glucose, the S26-AE2 strain may reduce the transcriptional regulation of glucose repression through decreased <i>HXK2</i> expression. The expression of genes related to pyruvate synthesis was increased in strain S26-AE2. Meanwhile, the expression levels of most tricarboxylic acid cycle-related genes in S26-AE2 were increased when cultured with 20 g/L glucose. Furthermore, the amount of tyrosol produced by strain S26 with the SNZ3<sup>Val125Ile</sup> mutation increased by 17.01% compared with that of the control strain S26 following exposure to 100 g/L glucose.</p><h3>Conclusions</h3><p>In this study, a strain, S26-AE2, with good growth and tyrosol production performance was obtained by adaptive evolution. The transcriptome analysis revealed that the differences in the expression of genes involved in metabolic pathways in adaptive evolutionary strains may be related to yeast growth and tyrosol production. Further reverse engineering verified that the mutation of <i>SNZ3</i> promoted tyrosol synthesis in <i>S. cerevisiae</i> in glucose-rich medium. This study provides a theoretical basis for the metabolic engineering of <i>S. cerevisiae</i> to synthesise tyrosol and its derivatives.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02627-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02627-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Tyrosol is an important drug precursor, and Saccharomyces cerevisiae is one of the main microorganisms that produces tyrosol. Although excessive metabolic modification increases the production of tyrosol, it also causes a decrease in the growth rate of yeast. Therefore, this study attempted to restore the growth of S. cerevisiae through adaptive evolution and further improve tyrosol production.
Results
After the adaptive laboratory evolution of S. cerevisiae S26, three evolutionary strains were obtained. The biomass of strain S26-AE2 reached 17.82 g DCW/L in the presence of 100 g/L glucose, which was 15.33% higher than that of S26, and its tyrosol production reached 817.83 mg/L. The transcriptome analysis revealed that, upon exposure to 100 g/L glucose, the S26-AE2 strain may reduce the transcriptional regulation of glucose repression through decreased HXK2 expression. The expression of genes related to pyruvate synthesis was increased in strain S26-AE2. Meanwhile, the expression levels of most tricarboxylic acid cycle-related genes in S26-AE2 were increased when cultured with 20 g/L glucose. Furthermore, the amount of tyrosol produced by strain S26 with the SNZ3Val125Ile mutation increased by 17.01% compared with that of the control strain S26 following exposure to 100 g/L glucose.
Conclusions
In this study, a strain, S26-AE2, with good growth and tyrosol production performance was obtained by adaptive evolution. The transcriptome analysis revealed that the differences in the expression of genes involved in metabolic pathways in adaptive evolutionary strains may be related to yeast growth and tyrosol production. Further reverse engineering verified that the mutation of SNZ3 promoted tyrosol synthesis in S. cerevisiae in glucose-rich medium. This study provides a theoretical basis for the metabolic engineering of S. cerevisiae to synthesise tyrosol and its derivatives.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis