{"title":"Structure and dynamics of anacardic acid in hexane, ethanol, and carbon tetrachloride: a molecular dynamics investigation","authors":"Ritesh K. Patil, Rontu Das, Debashis Kundu","doi":"10.1007/s00894-025-06320-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Anacardic acid (AA), a key compound in cashew nut shell liquid, is used in medicines and food preservation because of its antimicrobial and antioxidant properties. AA has four forms: saturated, monoene, diene, and triene. Extracting these forms using different solvents is difficult through experiments. To solve this, molecular dynamics (MD) simulations are used to study how AA behaves in three solvents: hexane, ethanol, and carbon tetrachloride. The results show that ethanol forms stronger hydrogen bonds with AA and allows higher movement of AA molecules, making it a better solvent for extraction. These findings help in selecting efficient and sustainable solvents for AA extraction.</p><h3>Methods</h3><p>MD simulations utilize the Optimized Potential for Liquid Simulations force field to describe the interactions of AA with hexane, ethanol, and carbon tetrachloride. MD simulations are performed using GROMACS open-source package. Structural properties, such as radial distribution functions and hydrogen bonding, and transport properties, like mean square displacement (MSD), are studied to understand how AA behaves in each solvent. These simulations reveal detailed interactions between AA and the solvents, showing why ethanol works better for extraction.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06320-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Anacardic acid (AA), a key compound in cashew nut shell liquid, is used in medicines and food preservation because of its antimicrobial and antioxidant properties. AA has four forms: saturated, monoene, diene, and triene. Extracting these forms using different solvents is difficult through experiments. To solve this, molecular dynamics (MD) simulations are used to study how AA behaves in three solvents: hexane, ethanol, and carbon tetrachloride. The results show that ethanol forms stronger hydrogen bonds with AA and allows higher movement of AA molecules, making it a better solvent for extraction. These findings help in selecting efficient and sustainable solvents for AA extraction.
Methods
MD simulations utilize the Optimized Potential for Liquid Simulations force field to describe the interactions of AA with hexane, ethanol, and carbon tetrachloride. MD simulations are performed using GROMACS open-source package. Structural properties, such as radial distribution functions and hydrogen bonding, and transport properties, like mean square displacement (MSD), are studied to understand how AA behaves in each solvent. These simulations reveal detailed interactions between AA and the solvents, showing why ethanol works better for extraction.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.