{"title":"Discovery of Novel Protein-Coding and Long Non-coding Transcripts in Distinct Regions of the Human Brain","authors":"Kristina Santucci, Yuning Cheng, Si-Mei Xu, Yulan Gao, Grace Lindner, Konii Takenaka, Michael Janitz","doi":"10.1007/s12031-025-02316-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recent improvements in the accuracy of long-read sequencing (LRS) technologies have expanded the scope for novel transcriptional isoform discovery. Additionally, these advancements have improved the precision of transcript quantification, enabling a more accurate reconstruction of complex splicing patterns and transcriptomes. Thus, this project aims to take advantage of these analytical developments for the discovery and analysis of RNA isoforms in the human brain. A set of novel transcript isoforms was compiled using three bioinformatic tools, quantifying their expression across eight replicates of the cerebellar hemisphere, five replicates of the frontal cortex, and six replicates of the putamen. By taking a subset of the novel isoforms consistent across all discovery methods, a set of 170 highly confident novel RNA isoforms was curated for downstream analysis. This set consisted of 104 messenger RNAs (mRNAs) and 66 long non-coding RNAs (lncRNAs) isoforms. The detailed structure, expression, and potential encoded proteins of novel mRNA isoform BambuTx321 have been further described as an exemplary representative. Additionally, the tissue-specific expression [mean counts per million (CPM) of 5.979] of novel lncRNA, BambuTx1299, in the cerebellar hemisphere was observed. Overall, this project has identified and annotated several novel RNA isoforms across diverse tissues of the human brain, providing insights into their expression patterns and investigating their potential functional roles. Thus, this project has contributed to a more comprehensive understanding of the brain’s transcriptomic landscape for applications in basic research.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02316-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02316-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent improvements in the accuracy of long-read sequencing (LRS) technologies have expanded the scope for novel transcriptional isoform discovery. Additionally, these advancements have improved the precision of transcript quantification, enabling a more accurate reconstruction of complex splicing patterns and transcriptomes. Thus, this project aims to take advantage of these analytical developments for the discovery and analysis of RNA isoforms in the human brain. A set of novel transcript isoforms was compiled using three bioinformatic tools, quantifying their expression across eight replicates of the cerebellar hemisphere, five replicates of the frontal cortex, and six replicates of the putamen. By taking a subset of the novel isoforms consistent across all discovery methods, a set of 170 highly confident novel RNA isoforms was curated for downstream analysis. This set consisted of 104 messenger RNAs (mRNAs) and 66 long non-coding RNAs (lncRNAs) isoforms. The detailed structure, expression, and potential encoded proteins of novel mRNA isoform BambuTx321 have been further described as an exemplary representative. Additionally, the tissue-specific expression [mean counts per million (CPM) of 5.979] of novel lncRNA, BambuTx1299, in the cerebellar hemisphere was observed. Overall, this project has identified and annotated several novel RNA isoforms across diverse tissues of the human brain, providing insights into their expression patterns and investigating their potential functional roles. Thus, this project has contributed to a more comprehensive understanding of the brain’s transcriptomic landscape for applications in basic research.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.