Discovery of Novel Protein-Coding and Long Non-coding Transcripts in Distinct Regions of the Human Brain

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kristina Santucci, Yuning Cheng, Si-Mei Xu, Yulan Gao, Grace Lindner, Konii Takenaka, Michael Janitz
{"title":"Discovery of Novel Protein-Coding and Long Non-coding Transcripts in Distinct Regions of the Human Brain","authors":"Kristina Santucci,&nbsp;Yuning Cheng,&nbsp;Si-Mei Xu,&nbsp;Yulan Gao,&nbsp;Grace Lindner,&nbsp;Konii Takenaka,&nbsp;Michael Janitz","doi":"10.1007/s12031-025-02316-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recent improvements in the accuracy of long-read sequencing (LRS) technologies have expanded the scope for novel transcriptional isoform discovery. Additionally, these advancements have improved the precision of transcript quantification, enabling a more accurate reconstruction of complex splicing patterns and transcriptomes. Thus, this project aims to take advantage of these analytical developments for the discovery and analysis of RNA isoforms in the human brain. A set of novel transcript isoforms was compiled using three bioinformatic tools, quantifying their expression across eight replicates of the cerebellar hemisphere, five replicates of the frontal cortex, and six replicates of the putamen. By taking a subset of the novel isoforms consistent across all discovery methods, a set of 170 highly confident novel RNA isoforms was curated for downstream analysis. This set consisted of 104 messenger RNAs (mRNAs) and 66 long non-coding RNAs (lncRNAs) isoforms. The detailed structure, expression, and potential encoded proteins of novel mRNA isoform BambuTx321 have been further described as an exemplary representative. Additionally, the tissue-specific expression [mean counts per million (CPM) of 5.979] of novel lncRNA, BambuTx1299, in the cerebellar hemisphere was observed. Overall, this project has identified and annotated several novel RNA isoforms across diverse tissues of the human brain, providing insights into their expression patterns and investigating their potential functional roles. Thus, this project has contributed to a more comprehensive understanding of the brain’s transcriptomic landscape for applications in basic research.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02316-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02316-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent improvements in the accuracy of long-read sequencing (LRS) technologies have expanded the scope for novel transcriptional isoform discovery. Additionally, these advancements have improved the precision of transcript quantification, enabling a more accurate reconstruction of complex splicing patterns and transcriptomes. Thus, this project aims to take advantage of these analytical developments for the discovery and analysis of RNA isoforms in the human brain. A set of novel transcript isoforms was compiled using three bioinformatic tools, quantifying their expression across eight replicates of the cerebellar hemisphere, five replicates of the frontal cortex, and six replicates of the putamen. By taking a subset of the novel isoforms consistent across all discovery methods, a set of 170 highly confident novel RNA isoforms was curated for downstream analysis. This set consisted of 104 messenger RNAs (mRNAs) and 66 long non-coding RNAs (lncRNAs) isoforms. The detailed structure, expression, and potential encoded proteins of novel mRNA isoform BambuTx321 have been further described as an exemplary representative. Additionally, the tissue-specific expression [mean counts per million (CPM) of 5.979] of novel lncRNA, BambuTx1299, in the cerebellar hemisphere was observed. Overall, this project has identified and annotated several novel RNA isoforms across diverse tissues of the human brain, providing insights into their expression patterns and investigating their potential functional roles. Thus, this project has contributed to a more comprehensive understanding of the brain’s transcriptomic landscape for applications in basic research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信