{"title":"LD end-pumped thermal compensation Q-switched step concentration Tm : YAG laser","authors":"Jiawen Guo, Zhi Li, Qiujing Lin, Shiwei Xue, Chunting Wu, Yongji Yu","doi":"10.1007/s10946-024-10238-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, for the first time, we propose an LD-end-pumped thermal compensation <i>Q</i>-switched step concentration Tm : YAG laser. A novel step concentration Tm : YAG crystal is used as the laser medium to mitigate the severe thermal effects typically encountered in single-doped Thulium crystals. To compensate the thermal lens effect generated by the crystal, we insert a negative lens into the cavity. At a repetition frequency of 100 Hz, an output energy of 7.82 mJ with a pulse width of 152.4 ns is achieved. The center wavelength is 2013.41 nm, and the beam quality is characterize by <span>\\(\\mathrm{M}_{x}^{2}=1.34\\)</span> and <span>\\(\\mathrm{M}_{y}^{2}=1.39\\)</span>.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"45 4","pages":"500 - 509"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10238-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, for the first time, we propose an LD-end-pumped thermal compensation Q-switched step concentration Tm : YAG laser. A novel step concentration Tm : YAG crystal is used as the laser medium to mitigate the severe thermal effects typically encountered in single-doped Thulium crystals. To compensate the thermal lens effect generated by the crystal, we insert a negative lens into the cavity. At a repetition frequency of 100 Hz, an output energy of 7.82 mJ with a pulse width of 152.4 ns is achieved. The center wavelength is 2013.41 nm, and the beam quality is characterize by \(\mathrm{M}_{x}^{2}=1.34\) and \(\mathrm{M}_{y}^{2}=1.39\).
期刊介绍:
The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including:
laser physics;
laser interaction with matter;
properties of laser beams;
laser thermonuclear fusion;
laser chemistry;
quantum and nonlinear optics;
optoelectronics;
solid state, gas, liquid, chemical, and semiconductor lasers.