{"title":"Causality-Based Contrastive Incremental Learning Framework for Domain Generalization","authors":"Xin Wang;Qingjie Zhao;Lei Wang;Wangwang Liu","doi":"10.26599/TST.2024.9010072","DOIUrl":null,"url":null,"abstract":"Learning domain-invariant feature representations is critical to alleviate the distribution differences between training and testing domains. The existing mainstream domain generalization approaches primarily pursue to align the across-domain distributions to extract the transferable feature representations. However, these representations may be insufficient and unstable. Moreover, these networks may also undergo catastrophic forgetting because the previous learned knowledge is replaced by the new learned knowledge. To cope with these issues, we propose a novel causality-based contrastive incremental learning model for domain generalization, which mainly includes three components: (1) intra-domain causal factorization, (2) inter-domain Mahalanobis similarity metric, and (3) contrastive knowledge distillation. The model extracts intra and inter domain-invariant knowledge to improve model generalization. Specifically, we first introduce a causal factori-zation to extract intra-domain invariant knowledge. Then, we design a Mahalanobis similarity metric to extract common inter-domain invariant knowledge. Finally, we propose a contrastive knowledge distillation with exponential moving average to distill model parameters in a smooth way to preserve the previous learned knowledge and mitigate model forgetting. Extensive experiments on several domain generalization benchmarks prove that our model achieves the state-of-the-art results, which sufficiently show the effectiveness of our model.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 4","pages":"1636-1647"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908663/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Learning domain-invariant feature representations is critical to alleviate the distribution differences between training and testing domains. The existing mainstream domain generalization approaches primarily pursue to align the across-domain distributions to extract the transferable feature representations. However, these representations may be insufficient and unstable. Moreover, these networks may also undergo catastrophic forgetting because the previous learned knowledge is replaced by the new learned knowledge. To cope with these issues, we propose a novel causality-based contrastive incremental learning model for domain generalization, which mainly includes three components: (1) intra-domain causal factorization, (2) inter-domain Mahalanobis similarity metric, and (3) contrastive knowledge distillation. The model extracts intra and inter domain-invariant knowledge to improve model generalization. Specifically, we first introduce a causal factori-zation to extract intra-domain invariant knowledge. Then, we design a Mahalanobis similarity metric to extract common inter-domain invariant knowledge. Finally, we propose a contrastive knowledge distillation with exponential moving average to distill model parameters in a smooth way to preserve the previous learned knowledge and mitigate model forgetting. Extensive experiments on several domain generalization benchmarks prove that our model achieves the state-of-the-art results, which sufficiently show the effectiveness of our model.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.