{"title":"A Tail Latency SLO Guaranteed Task Scheduling Scheme for User-Facing Services","authors":"Zhijun Wang;Huiyang Li;Lin Sun;Stoddard Rosenkrantz;Hao Che;Hong Jiang","doi":"10.1109/TPDS.2025.3542638","DOIUrl":null,"url":null,"abstract":"A primary design objective for user-facing services for cloud and edge computing is to maximize query throughput, while meeting query tail latency Service Level Objectives (SLOs) for individual queries. Unfortunately, the existing solutions fall short of achieving this design objective, which we argue, is largely attributed to the fact that they fail to take the query fanout explicitly into account. In this paper, we propose TailGuard based on a Tail-latency-SLO-and-Fanout-aware Earliest-Deadline-First Queuing policy (TF-EDFQ) for task queuing at individual task servers the query tasks are fanned out to. With the task pre-dequeuing time deadline for each task being derived based on both query tail latency SLO and query fanout, TailGuard takes an important first step towards achieving the design objective. A query admission control scheme is also developed to provide tail latency SLO guarantee in the presence of resource shortages. TailGuard is evaluated against First-In-First-Out (FIFO) task queuing, task PRIority Queuing (PRIQ) and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies by both simulation and testing in the Amazon EC2 cloud. It is driven by three types of applications in the Tailbench benchmark suite, featuring web search, in-memory key-value store, and transactional database applications. The results demonstrate that TailGuard can significantly improve resource utilization (e.g., up to 80% compared to FIFO), while also meeting the targeted tail latency SLOs, as compared with the other three policies. TailGuard is also implemented and tested in a highly heterogeneous Sensing-<inline-formula><tex-math>$a$</tex-math></inline-formula>s-a-Service (SaS) testbed for a data sensing service, demonstrating performance gains of up to 33% . These results are consistent with both the simulation and Amazon EC2 results.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 4","pages":"759-774"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891045/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A primary design objective for user-facing services for cloud and edge computing is to maximize query throughput, while meeting query tail latency Service Level Objectives (SLOs) for individual queries. Unfortunately, the existing solutions fall short of achieving this design objective, which we argue, is largely attributed to the fact that they fail to take the query fanout explicitly into account. In this paper, we propose TailGuard based on a Tail-latency-SLO-and-Fanout-aware Earliest-Deadline-First Queuing policy (TF-EDFQ) for task queuing at individual task servers the query tasks are fanned out to. With the task pre-dequeuing time deadline for each task being derived based on both query tail latency SLO and query fanout, TailGuard takes an important first step towards achieving the design objective. A query admission control scheme is also developed to provide tail latency SLO guarantee in the presence of resource shortages. TailGuard is evaluated against First-In-First-Out (FIFO) task queuing, task PRIority Queuing (PRIQ) and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies by both simulation and testing in the Amazon EC2 cloud. It is driven by three types of applications in the Tailbench benchmark suite, featuring web search, in-memory key-value store, and transactional database applications. The results demonstrate that TailGuard can significantly improve resource utilization (e.g., up to 80% compared to FIFO), while also meeting the targeted tail latency SLOs, as compared with the other three policies. TailGuard is also implemented and tested in a highly heterogeneous Sensing-$a$s-a-Service (SaS) testbed for a data sensing service, demonstrating performance gains of up to 33% . These results are consistent with both the simulation and Amazon EC2 results.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.