Jia Wu;Jinzhao Lin;Yu Pang;Xiaoming Jiang;Xinwei Li;Hongying Meng;Yamei Luo;Lu Yang;Zhangyong Li
{"title":"Cascaded Frequency-Encoded Multi-Scale Neural Fields for Sparse-View CT Reconstruction","authors":"Jia Wu;Jinzhao Lin;Yu Pang;Xiaoming Jiang;Xinwei Li;Hongying Meng;Yamei Luo;Lu Yang;Zhangyong Li","doi":"10.1109/TCI.2025.3536078","DOIUrl":null,"url":null,"abstract":"Sparse-view computed tomography aims to reduce radiation exposure but often suffers from degraded image quality due to insufficient projection data. Traditional methods struggle to balance data fidelity and detail preservation, particularly in high-frequency regions. In this paper, we propose a Cascaded Frequency-Encoded Multi-Scale Neural Fields (Ca-FMNF) framework. We reformulate the reconstruction task as refining high-frequency residuals upon a high-quality low-frequency foundation. It integrates a pre-trained iterative unfolding network for initial low-frequency estimation with a FMNF to represent high-frequency residuals. The FMNF parameters are optimized by minimizing the discrepancy between the measured projections and those estimated through the imaging forward model, thereby refining the residuals based on the initial estimation. This dual-stage strategy enhances data consistency and preserves fine structures. The extensive experiments on simulated and clinical datasets demonstrate that our method achieves the optimal results in both quantitative metrics and visual quality, effectively reducing artifacts and preserving structural details.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"237-250"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858729/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse-view computed tomography aims to reduce radiation exposure but often suffers from degraded image quality due to insufficient projection data. Traditional methods struggle to balance data fidelity and detail preservation, particularly in high-frequency regions. In this paper, we propose a Cascaded Frequency-Encoded Multi-Scale Neural Fields (Ca-FMNF) framework. We reformulate the reconstruction task as refining high-frequency residuals upon a high-quality low-frequency foundation. It integrates a pre-trained iterative unfolding network for initial low-frequency estimation with a FMNF to represent high-frequency residuals. The FMNF parameters are optimized by minimizing the discrepancy between the measured projections and those estimated through the imaging forward model, thereby refining the residuals based on the initial estimation. This dual-stage strategy enhances data consistency and preserves fine structures. The extensive experiments on simulated and clinical datasets demonstrate that our method achieves the optimal results in both quantitative metrics and visual quality, effectively reducing artifacts and preserving structural details.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.