Bo Lu;Qinghai Miao;Yahui Liu;Tariku Sinshaw Tamir;Hongxia Zhao;Xiqiao Zhang;Yisheng Lv;Fei-Yue Wang
{"title":"A Diffusion Model for Traffic Data Imputation","authors":"Bo Lu;Qinghai Miao;Yahui Liu;Tariku Sinshaw Tamir;Hongxia Zhao;Xiqiao Zhang;Yisheng Lv;Fei-Yue Wang","doi":"10.1109/JAS.2024.124611","DOIUrl":null,"url":null,"abstract":"Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems (ITS) in the real world. As a state-of-the-art generative model, the diffusion model has proven highly successful in image generation, speech generation, time series modelling etc. and now opens a new avenue for traffic data imputation. In this paper, we propose a conditional diffusion model, called the implicit-explicit diffusion model, for traffic data imputation. This model exploits both the implicit and explicit feature of the data simultaneously. More specifically, we design two types of feature extraction modules, one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series. This approach not only inherits the advantages of the diffusion model for estimating missing data, but also takes into account the multi-scale correlation inherent in traffic data. To illustrate the performance of the model, extensive experiments are conducted on three real-world time series datasets using different missing rates. The experimental results demonstrate that the model improves imputation accuracy and generalization capability.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 3","pages":"606-617"},"PeriodicalIF":15.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909370/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems (ITS) in the real world. As a state-of-the-art generative model, the diffusion model has proven highly successful in image generation, speech generation, time series modelling etc. and now opens a new avenue for traffic data imputation. In this paper, we propose a conditional diffusion model, called the implicit-explicit diffusion model, for traffic data imputation. This model exploits both the implicit and explicit feature of the data simultaneously. More specifically, we design two types of feature extraction modules, one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series. This approach not only inherits the advantages of the diffusion model for estimating missing data, but also takes into account the multi-scale correlation inherent in traffic data. To illustrate the performance of the model, extensive experiments are conducted on three real-world time series datasets using different missing rates. The experimental results demonstrate that the model improves imputation accuracy and generalization capability.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.