{"title":"Resource Management and Trajectory Optimization for UAV-IRS Assisted Maritime Edge Computing Networks","authors":"Chaoyue Zhang;Bin Lin;Xu Hu;Shuang Qi;Liping Qian;Yuan Wu","doi":"10.26599/TST.2024.9010074","DOIUrl":null,"url":null,"abstract":"With the exponential growth of maritime wireless devices and the rapid development of maritime applications, traditional maritime communication networks encounter communication and computation limitations in supporting computation-intensive and latency-critical tasks. Edge computing and Intelligent Reflecting Surface (IRS) have emerged as promising techniques to improve communication and computation services for maritime devices with limited computation capabilities and battery capacity. This paper studies an IRS Mounted on Unmanned Aerial Vehicle (UIRS) assisted maritime edge computing network, in which the UIRS is deployed to assist the transmission from Unmanned Surface Vehicles (USVs) to the edge server via Non-Orthogonal Multiple Access (NOMA) protocol. We propose a resource management and trajectory optimization scheme by jointly optimizing subslot duration, offloading ratios, transmit power, edge computation capability allocation, UIRS phase shifts and UIRS trajectory, aiming at minimizing the overall energy consumption. Since the non-convex nature of the optimization problem, we propose a two-layered method by decomposing the original problem into two subproblems. The top-layered subproblem is solved by the Semi-Definite Relaxation (SDR) method and the underlying-layered subproblem is solved by the Deep Deterministic Policy Gradient (DDPG) algorithm. Numerical results demonstrate that our proposed scheme can effectively and efficiently reduce overall energy consumption.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 4","pages":"1600-1616"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908662/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
With the exponential growth of maritime wireless devices and the rapid development of maritime applications, traditional maritime communication networks encounter communication and computation limitations in supporting computation-intensive and latency-critical tasks. Edge computing and Intelligent Reflecting Surface (IRS) have emerged as promising techniques to improve communication and computation services for maritime devices with limited computation capabilities and battery capacity. This paper studies an IRS Mounted on Unmanned Aerial Vehicle (UIRS) assisted maritime edge computing network, in which the UIRS is deployed to assist the transmission from Unmanned Surface Vehicles (USVs) to the edge server via Non-Orthogonal Multiple Access (NOMA) protocol. We propose a resource management and trajectory optimization scheme by jointly optimizing subslot duration, offloading ratios, transmit power, edge computation capability allocation, UIRS phase shifts and UIRS trajectory, aiming at minimizing the overall energy consumption. Since the non-convex nature of the optimization problem, we propose a two-layered method by decomposing the original problem into two subproblems. The top-layered subproblem is solved by the Semi-Definite Relaxation (SDR) method and the underlying-layered subproblem is solved by the Deep Deterministic Policy Gradient (DDPG) algorithm. Numerical results demonstrate that our proposed scheme can effectively and efficiently reduce overall energy consumption.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.