{"title":"FedTune-SGM: A Stackelberg-Driven Personalized Federated Learning Strategy for Edge Networks","authors":"Neha Singh;Mainak Adhikari","doi":"10.1109/TPDS.2025.3543368","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) has emerged as a prominent solution for distributed learning environments, enabling collaborative model training without centralized data collection. However, FL faces significant challenges such as data heterogeneity and resource-constraint edge devices for model training and analysis, leading to accuracy degradation and bias in model performance. To address these critical issues, we propose a novel FL strategy named FedTune-SGM, designed to optimize model training in decentralized settings. In this strategy, a cloud-based model is initially trained and fine-tuned on the edge devices with additional layers tailored to the specific data characteristics. This fine-tuning process effectively mitigates the impact of data heterogeneity, enhancing the robustness and generalization capability of the model. FedTune-SGM employs a strategic weighting mechanism that ensures a balanced and equitable contribution from participating edge devices to prevent dominant influences from resource-rich devices and promote a fairer and more accurate aggregated model. Additionally, the proposed strategy integrates a Stackelberg Game model to foster an interactive and dynamic cloud-edge setup that motivates edge devices to invest more effort in model training and ensures the effectiveness of resource-constraint edge devices. Extensive experiments conducted on three diverse datasets highlight the superior performance of the proposed FedTune-SGM strategy compared to state-of-the-art FL techniques in terms of accuracy and robustness while meeting the critical challenges of data heterogeneity and resource limitations in FL environments. Through these innovations, FedTune-SGM paves the way for more reliable and efficient distributed learning systems, unlocking the full potential of FL in practical applications.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 4","pages":"791-802"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891908/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL) has emerged as a prominent solution for distributed learning environments, enabling collaborative model training without centralized data collection. However, FL faces significant challenges such as data heterogeneity and resource-constraint edge devices for model training and analysis, leading to accuracy degradation and bias in model performance. To address these critical issues, we propose a novel FL strategy named FedTune-SGM, designed to optimize model training in decentralized settings. In this strategy, a cloud-based model is initially trained and fine-tuned on the edge devices with additional layers tailored to the specific data characteristics. This fine-tuning process effectively mitigates the impact of data heterogeneity, enhancing the robustness and generalization capability of the model. FedTune-SGM employs a strategic weighting mechanism that ensures a balanced and equitable contribution from participating edge devices to prevent dominant influences from resource-rich devices and promote a fairer and more accurate aggregated model. Additionally, the proposed strategy integrates a Stackelberg Game model to foster an interactive and dynamic cloud-edge setup that motivates edge devices to invest more effort in model training and ensures the effectiveness of resource-constraint edge devices. Extensive experiments conducted on three diverse datasets highlight the superior performance of the proposed FedTune-SGM strategy compared to state-of-the-art FL techniques in terms of accuracy and robustness while meeting the critical challenges of data heterogeneity and resource limitations in FL environments. Through these innovations, FedTune-SGM paves the way for more reliable and efficient distributed learning systems, unlocking the full potential of FL in practical applications.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.