A Synergistic CNN-DF Method for Landslide Susceptibility Assessment

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiangang Lu;Yi He;Lifeng Zhang;Qing Zhang;Jiapeng Tang;Tianbao Huo;Yunhao Zhang
{"title":"A Synergistic CNN-DF Method for Landslide Susceptibility Assessment","authors":"Jiangang Lu;Yi He;Lifeng Zhang;Qing Zhang;Jiapeng Tang;Tianbao Huo;Yunhao Zhang","doi":"10.1109/JSTARS.2025.3541638","DOIUrl":null,"url":null,"abstract":"The complex structures and intricate hyperparameters of existing deep learning (DL) models make achieving higher accuracy in landslide susceptibility assessment (LSA) time-consuming and labor-intensive. Deep forest (DF) is a decision tree-based DL framework that uses a cascade structure to process features, with model depth adapting to the input data. To explore a more ideal landslide susceptibility model, this study designed a landslide susceptibility model combining convolutional neural networks (CNNs) and DF, referred to as CNN-DF. The Bailong River Basin, a region severely affected by landslides, was chosen as the study area. First, the landslide inventory and influencing factors of the study area were obtained. Second, an equal number of landslide and nonlandslide samples were selected under similar environmental constraints to establish the dataset. Third, CNN was used to extract high-level features from the raw data, which were then input into the DF model for training and testing. Finally, the trained model was used to predict landslide susceptibility. The results showed that the CNN-DF model achieved high prediction accuracy, with an AUC of 0.9061 on the testing set, outperforming DF, CNN, and other commonly used machine learning models. In landslide susceptibility maps (LSMs), the proportion of historical landslides in the very high susceptibility category of CNN-DF was also higher than that of other models. CNN-DF is feasible for LSA, offering higher efficiency and more accurate results. In addition, the SHAP algorithm was used to quantify the contribution of features to the prediction results both globally and locally, further explaining the model. The LSM based on CNN-DF can provide a scientific basis for landslide prevention and disaster management in the target area.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"6584-6599"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884718","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884718/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The complex structures and intricate hyperparameters of existing deep learning (DL) models make achieving higher accuracy in landslide susceptibility assessment (LSA) time-consuming and labor-intensive. Deep forest (DF) is a decision tree-based DL framework that uses a cascade structure to process features, with model depth adapting to the input data. To explore a more ideal landslide susceptibility model, this study designed a landslide susceptibility model combining convolutional neural networks (CNNs) and DF, referred to as CNN-DF. The Bailong River Basin, a region severely affected by landslides, was chosen as the study area. First, the landslide inventory and influencing factors of the study area were obtained. Second, an equal number of landslide and nonlandslide samples were selected under similar environmental constraints to establish the dataset. Third, CNN was used to extract high-level features from the raw data, which were then input into the DF model for training and testing. Finally, the trained model was used to predict landslide susceptibility. The results showed that the CNN-DF model achieved high prediction accuracy, with an AUC of 0.9061 on the testing set, outperforming DF, CNN, and other commonly used machine learning models. In landslide susceptibility maps (LSMs), the proportion of historical landslides in the very high susceptibility category of CNN-DF was also higher than that of other models. CNN-DF is feasible for LSA, offering higher efficiency and more accurate results. In addition, the SHAP algorithm was used to quantify the contribution of features to the prediction results both globally and locally, further explaining the model. The LSM based on CNN-DF can provide a scientific basis for landslide prevention and disaster management in the target area.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信