{"title":"Digital Entity Management Methodology for Digital Twin Implementation: Concept, Definition, and Examples","authors":"Yegi Lee;Myung-Sun Baek;Kyoungro Yoon","doi":"10.1109/TBC.2024.3517138","DOIUrl":null,"url":null,"abstract":"Many efforts to achieve cost savings through simulations have been ongoing in the cyber-physical system (CPS) industry and manufacturing field. Recently, the concept of digital twins has emerged as a promising solution for cost reduction in various fields, such as smart cities, factory optimization, architecture, and manufacturing. Digital twins offer enormous potential by continuously monitoring and updating data to study a wide range of issues and improve products and processes. However, the practical implementation of digital twins presents significant challenges. Additionally, while various studies have introduced the concepts and roles of digital twin systems and digital components, further research is needed to explore efficient operation and management strategies. This paper aims to present digital entity management methodology for the efficient implementation of digital twin systems. Our proposed class-level digital entity management methodology constructs complex and repetitively used digital entities into digital entity classes. This approach facilitates the abstraction, inheritance, and upcasting of digital entity classes. By leveraging class-level management and easily reusable and modifiable digital entities, the implementation of low-complexity digital twin systems becomes feasible. The proposed methodology aims to streamline the digital twin implementation process, addressing complex technical integration and practical implementation challenges.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 1","pages":"19-29"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819937/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Many efforts to achieve cost savings through simulations have been ongoing in the cyber-physical system (CPS) industry and manufacturing field. Recently, the concept of digital twins has emerged as a promising solution for cost reduction in various fields, such as smart cities, factory optimization, architecture, and manufacturing. Digital twins offer enormous potential by continuously monitoring and updating data to study a wide range of issues and improve products and processes. However, the practical implementation of digital twins presents significant challenges. Additionally, while various studies have introduced the concepts and roles of digital twin systems and digital components, further research is needed to explore efficient operation and management strategies. This paper aims to present digital entity management methodology for the efficient implementation of digital twin systems. Our proposed class-level digital entity management methodology constructs complex and repetitively used digital entities into digital entity classes. This approach facilitates the abstraction, inheritance, and upcasting of digital entity classes. By leveraging class-level management and easily reusable and modifiable digital entities, the implementation of low-complexity digital twin systems becomes feasible. The proposed methodology aims to streamline the digital twin implementation process, addressing complex technical integration and practical implementation challenges.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”