{"title":"Nonparametric regression with predictors missing at random and the scale depending on auxiliary covariates","authors":"Tian Jiang","doi":"10.1016/j.jspi.2025.106278","DOIUrl":null,"url":null,"abstract":"<div><div>Nonparametric regression with missing at random (MAR) predictors, univariate regression component of interest, and the scale function depending on both the predictor and auxiliary covariates, is considered. The asymptotic theory suggests that both heteroscedasticity and MAR mechanism affect the sharp constant of the minimax mean integrated squared error (MISE) convergence. We propose a data-driven procedure adaptive to the missing mechanism and unknown smoothness of the estimated regression function. The estimator preserves the optimal convergence rate and can achieve sharp minimaxity when predictors are missing completely at random (MCAR).</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"239 ","pages":"Article 106278"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonparametric regression with missing at random (MAR) predictors, univariate regression component of interest, and the scale function depending on both the predictor and auxiliary covariates, is considered. The asymptotic theory suggests that both heteroscedasticity and MAR mechanism affect the sharp constant of the minimax mean integrated squared error (MISE) convergence. We propose a data-driven procedure adaptive to the missing mechanism and unknown smoothness of the estimated regression function. The estimator preserves the optimal convergence rate and can achieve sharp minimaxity when predictors are missing completely at random (MCAR).
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.