Dual-driven selenium Janus single-atom nanomotors for autonomous regulating mitochondrial oxygen imbalance to catalytic therapy of rheumatoid arthritis

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xu Chen , Yang Yang , Jiajun Chen , Yuebing He , Yukai Huang , Qidang Huang , Weiming Deng , Ruiqi Zhu , Xuechan Huang , Tianwang Li
{"title":"Dual-driven selenium Janus single-atom nanomotors for autonomous regulating mitochondrial oxygen imbalance to catalytic therapy of rheumatoid arthritis","authors":"Xu Chen ,&nbsp;Yang Yang ,&nbsp;Jiajun Chen ,&nbsp;Yuebing He ,&nbsp;Yukai Huang ,&nbsp;Qidang Huang ,&nbsp;Weiming Deng ,&nbsp;Ruiqi Zhu ,&nbsp;Xuechan Huang ,&nbsp;Tianwang Li","doi":"10.1016/j.redox.2025.103574","DOIUrl":null,"url":null,"abstract":"<div><div>O<sub>2</sub> deficiency and excessive reactive oxygen and nitrogen species (RONS) in macrophage mitochondria is a key factor causing oxygen imbalance in rheumatoid arthritis microenvironment (RAM). Although nanocatalytic therapy that simultaneously produce O<sub>2</sub> and eliminate RONS offer a novel strategy for RA therapy, the therapeutic efficacy of nanozymes is limited by the lack of autonomous targeting into mitochondria. Herein, we constructed a Janus-structured nanomotor (Pd@MSe) with autonomous targeting ability by embedding Pd single-atom nanozymes into mesoporous selenium (MSe) nanozymes, and obtained a composite nanomotor (Pd@MSe-TPP) with dual-driven forces by modifying with triphenylphosphine (TPP) in MSe hemisphere. In RAM, Pd@MSe-TPP nanomotor achieved autonomously target into macrophages mitochondria with the driven of generation O<sub>2</sub> and TPP targeting effect, moreover under the single-atom effect of the Pd nanozymes enhanced electronic transfer between nanozymes, which significantly boosted GPx catalytic activity further effectively enhanced the diffusion of Pd@MSe-TPP nanomotor, thus quickly resorted the oxygen balance. Additionally, while regulating oxygen imbalance, Pd@MSe-TPP nanomotor enable rapidly blocked the inflammatory cascade, restored mitochondrial function and alleviated inflammation, further prevented cartilage degradation and effectively inhibited RA progression. Therefore, the exquisitely designed nanoplatform to regulation arthritic microenvironment provides a new direction for the RA therapy and the clinical translation of nanomedicine.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103574"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000874","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

O2 deficiency and excessive reactive oxygen and nitrogen species (RONS) in macrophage mitochondria is a key factor causing oxygen imbalance in rheumatoid arthritis microenvironment (RAM). Although nanocatalytic therapy that simultaneously produce O2 and eliminate RONS offer a novel strategy for RA therapy, the therapeutic efficacy of nanozymes is limited by the lack of autonomous targeting into mitochondria. Herein, we constructed a Janus-structured nanomotor (Pd@MSe) with autonomous targeting ability by embedding Pd single-atom nanozymes into mesoporous selenium (MSe) nanozymes, and obtained a composite nanomotor (Pd@MSe-TPP) with dual-driven forces by modifying with triphenylphosphine (TPP) in MSe hemisphere. In RAM, Pd@MSe-TPP nanomotor achieved autonomously target into macrophages mitochondria with the driven of generation O2 and TPP targeting effect, moreover under the single-atom effect of the Pd nanozymes enhanced electronic transfer between nanozymes, which significantly boosted GPx catalytic activity further effectively enhanced the diffusion of Pd@MSe-TPP nanomotor, thus quickly resorted the oxygen balance. Additionally, while regulating oxygen imbalance, Pd@MSe-TPP nanomotor enable rapidly blocked the inflammatory cascade, restored mitochondrial function and alleviated inflammation, further prevented cartilage degradation and effectively inhibited RA progression. Therefore, the exquisitely designed nanoplatform to regulation arthritic microenvironment provides a new direction for the RA therapy and the clinical translation of nanomedicine.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信