Fractional-order Izhikevich neuron Model: PI-rules numerical simulations and parameter identification

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Amr M. AbdelAty , Mohammed E. Fouda
{"title":"Fractional-order Izhikevich neuron Model: PI-rules numerical simulations and parameter identification","authors":"Amr M. AbdelAty ,&nbsp;Mohammed E. Fouda","doi":"10.1016/j.chaos.2025.116203","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a novel approach to identifying parameters of the fractional-order (FO) Izhikevich spiking neuron model using real neuronal data. The primary contributions include the development of a limited memory numerical simulation scheme based on the modified Product-Integration Rectangular rule and the application of the Marine Predator Algorithm (MPA) to solve the nonlinear optimization problem of parameter identification. Experimental results demonstrate that the fractional-order neuron models significantly outperform the traditional integer-order models, as evidenced by higher median coincidence factors across multiple datasets. Specifically, the fractional-order models with smaller window sizes achieved superior performance, suggesting their potential for more accurate modeling of complex neuronal dynamics. This work paves the way for further exploration of fractional-order models in computational neuroscience, offering enhanced flexibility and precision in simulating neuronal behavior.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116203"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002164","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel approach to identifying parameters of the fractional-order (FO) Izhikevich spiking neuron model using real neuronal data. The primary contributions include the development of a limited memory numerical simulation scheme based on the modified Product-Integration Rectangular rule and the application of the Marine Predator Algorithm (MPA) to solve the nonlinear optimization problem of parameter identification. Experimental results demonstrate that the fractional-order neuron models significantly outperform the traditional integer-order models, as evidenced by higher median coincidence factors across multiple datasets. Specifically, the fractional-order models with smaller window sizes achieved superior performance, suggesting their potential for more accurate modeling of complex neuronal dynamics. This work paves the way for further exploration of fractional-order models in computational neuroscience, offering enhanced flexibility and precision in simulating neuronal behavior.
分数阶Izhikevich神经元模型:pi规则数值模拟与参数辨识
本文介绍了一种利用真实神经元数据识别分数阶Izhikevich峰值神经元模型参数的新方法。主要贡献包括基于改进积积分矩形规则的有限内存数值模拟方案的开发,以及应用海洋捕食者算法(MPA)解决参数辨识的非线性优化问题。实验结果表明,分数阶神经元模型明显优于传统的整数阶模型,多数据集的中位数符合系数更高。具体来说,具有较小窗口尺寸的分数阶模型取得了优异的性能,这表明它们有可能更准确地建模复杂的神经元动力学。这项工作为进一步探索计算神经科学中的分数阶模型铺平了道路,为模拟神经元行为提供了更高的灵活性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信