Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu
{"title":"Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization","authors":"Jun Huang ,&nbsp;Pengfei Nie ,&nbsp;Yongchao Lu ,&nbsp;Jiayang Li ,&nbsp;Yiwen Wang ,&nbsp;Jianyun Liu","doi":"10.1016/j.actphy.2025.100066","DOIUrl":null,"url":null,"abstract":"<div><div>Water hardness, predominantly due to the presence of Ca<sup>2+</sup> and Mg<sup>2+</sup> ions, presents significant challenges to water quality and public health. Addressing this issue necessitates effective water softening, which remains a pivotal task in water treatment. Capacitive deionization (CDI) has emerged as a promising technology for selective hardness removal, leveraging the low-cost, non-toxic and environmentally friendly selective electrode materials. Electrospun nanofibers, characterized by their three-dimensional porous structure, offer good flexibility, high specific surface area and excellent electrical conductivity. Their components can be tailored to meet the specific requirements. In this study, we incorporated mordenite (MOR), noted for its excellent ion-exchange capacity, into self-supporting nitrogen-doped carbon nanofibers (N–CNF) via electrospinning a blend of polyacrylonitrile (PAN), urea, and MOR, followed by carbonization. The resulting mordenite-loaded N–CNF composite (MOR@N–CNF) exhibited good flexibility and high conductivity. Scanning electron microscopy and X-ray diffraction analysis confirmed the presence and uniform distribution of MOR within the CNF matrix. X-ray photo spectroscopy demonstrated an increase in nitrogen content in MOR@N–CNF. In addition, the MOR@N–CNF composite displayed enhanced hydrophilicity and an increased specific surface area. When used as a self-supporting electrode, MOR@N–CNF exhibited the electrochemical specific capacitance of 162.7 ​F/g, with the specific capacitance retention of 60% in a CaCl<sub>2</sub> solution. In an asymmetric CDI setup with activated carbon (AC) as the anode, the MOR@N–CNF cathode demonstrated outstanding adsorption capacities of 1501 and 1416 ​μmol/g for Mg<sup>2+</sup> and Ca<sup>2+</sup>, respectively. The composite electrode exhibited high selectivity for Mg<sup>2+</sup> and Ca<sup>2+</sup> over Na<sup>+</sup> with a selectivity factor of 9.7 and 8.9, respectively. These attributes endow the material with exceptional ability to discriminate between divalent and monovalent ions, thereby enhancing its potential for hardness removal. Furthermore, the electrode retained 78% of its adsorption capacity after 40 cycles, demonstrating robust cyclic stability, and ensuring long-term CDI operation. This work provides a new strategy for preparing ion-exchange material-based composite electrodes and highlights the potential of CDI technology in hard water softening.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 7","pages":"Article 100066"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000220","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water hardness, predominantly due to the presence of Ca2+ and Mg2+ ions, presents significant challenges to water quality and public health. Addressing this issue necessitates effective water softening, which remains a pivotal task in water treatment. Capacitive deionization (CDI) has emerged as a promising technology for selective hardness removal, leveraging the low-cost, non-toxic and environmentally friendly selective electrode materials. Electrospun nanofibers, characterized by their three-dimensional porous structure, offer good flexibility, high specific surface area and excellent electrical conductivity. Their components can be tailored to meet the specific requirements. In this study, we incorporated mordenite (MOR), noted for its excellent ion-exchange capacity, into self-supporting nitrogen-doped carbon nanofibers (N–CNF) via electrospinning a blend of polyacrylonitrile (PAN), urea, and MOR, followed by carbonization. The resulting mordenite-loaded N–CNF composite (MOR@N–CNF) exhibited good flexibility and high conductivity. Scanning electron microscopy and X-ray diffraction analysis confirmed the presence and uniform distribution of MOR within the CNF matrix. X-ray photo spectroscopy demonstrated an increase in nitrogen content in MOR@N–CNF. In addition, the MOR@N–CNF composite displayed enhanced hydrophilicity and an increased specific surface area. When used as a self-supporting electrode, MOR@N–CNF exhibited the electrochemical specific capacitance of 162.7 ​F/g, with the specific capacitance retention of 60% in a CaCl2 solution. In an asymmetric CDI setup with activated carbon (AC) as the anode, the MOR@N–CNF cathode demonstrated outstanding adsorption capacities of 1501 and 1416 ​μmol/g for Mg2+ and Ca2+, respectively. The composite electrode exhibited high selectivity for Mg2+ and Ca2+ over Na+ with a selectivity factor of 9.7 and 8.9, respectively. These attributes endow the material with exceptional ability to discriminate between divalent and monovalent ions, thereby enhancing its potential for hardness removal. Furthermore, the electrode retained 78% of its adsorption capacity after 40 cycles, demonstrating robust cyclic stability, and ensuring long-term CDI operation. This work provides a new strategy for preparing ion-exchange material-based composite electrodes and highlights the potential of CDI technology in hard water softening.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信