Beyond encryption: How deep learning can break microcontroller security through power analysis

Ismail Negabi, Smail Ait El Asri, Samir El Adib, Naoufal Raissouni
{"title":"Beyond encryption: How deep learning can break microcontroller security through power analysis","authors":"Ismail Negabi,&nbsp;Smail Ait El Asri,&nbsp;Samir El Adib,&nbsp;Naoufal Raissouni","doi":"10.1016/j.prime.2025.100947","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the application of convolutional neural networks (CNNs) for power analysis attacks (PAAs) on cryptographic systems, specifically targeting resource-constrained devices like microcontrollers. Vulnerabilities in these systems stem from unintended information leakage through side channels, such as power consumption during cryptographic operations. By utilizing CNNs, attackers can analyze these measurements to potentially extract secret keys. We propose a CNN-based PAA designed to recover Advanced Encryption Standard (AES) keys from microcontrollers. The CNN was trained on a dataset of 150,000 power consumption traces collected during AES encryption. This paper explores how our CNN-based method exploits information leakage to recover secret keys and compares its performance against existing approaches. Our method, implemented on an ASIC with 130 nm technology, successfully extracts keys using just 1100 traces, marking a substantial improvement over current state-of-the-art technique.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"11 ","pages":"Article 100947"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671125000543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the application of convolutional neural networks (CNNs) for power analysis attacks (PAAs) on cryptographic systems, specifically targeting resource-constrained devices like microcontrollers. Vulnerabilities in these systems stem from unintended information leakage through side channels, such as power consumption during cryptographic operations. By utilizing CNNs, attackers can analyze these measurements to potentially extract secret keys. We propose a CNN-based PAA designed to recover Advanced Encryption Standard (AES) keys from microcontrollers. The CNN was trained on a dataset of 150,000 power consumption traces collected during AES encryption. This paper explores how our CNN-based method exploits information leakage to recover secret keys and compares its performance against existing approaches. Our method, implemented on an ASIC with 130 nm technology, successfully extracts keys using just 1100 traces, marking a substantial improvement over current state-of-the-art technique.
超越加密:深度学习如何通过功率分析打破微控制器的安全性
本文研究了卷积神经网络(cnn)在加密系统上的功率分析攻击(PAAs)的应用,特别是针对资源受限的设备,如微控制器。这些系统中的漏洞来自于通过侧通道的意外信息泄漏,例如加密操作期间的功耗。通过利用cnn,攻击者可以分析这些测量值以潜在地提取密钥。我们提出了一种基于cnn的PAA,旨在从微控制器中恢复高级加密标准(AES)密钥。CNN是在AES加密期间收集的150,000个功耗痕迹数据集上进行训练的。本文探讨了我们基于cnn的方法如何利用信息泄漏来恢复密钥,并将其性能与现有方法进行了比较。我们的方法在130纳米技术的ASIC上实现,仅使用1100道迹就成功地提取了密钥,这标志着对当前最先进技术的重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信