{"title":"Robust fault detection method based on interval neural networks optimized by ellipsoid bundles","authors":"Meng Zhou , Yinyue Zhang , Jing Wang , Tarek Raïssi , Vicenç Puig","doi":"10.1016/j.automatica.2025.112233","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel framework for interval prediction neural network model optimized by ellipsoid bundles is designed for data-driven systems with unknown but bounded noise and disturbances. Firstly, a point prediction neural network model is constructed with input and output data, the prediction error is assumed to be unknown but bounded. Then, a feasible set related to the output weights of the neural network model is described by ellipsoid bundles, which allows decreasing conservatism compared to other types of sets such as zonotopes or ellipsoids. To obtain a more precise description shape of the feasible set, an optimal iterative formula is theoretically derived by minimizing the Frobenius norm of ellipsoid bundles. Next, an outer bounding box is established to obtain the maximum and minimum weights that satisfy the feasible set, thereby providing the output prediction interval. This interval characterizes the systems’ disturbance and can be used as the threshold when dealing with fault diagnosis applications. Finally, the effectiveness of the proposed interval neural network model is demonstrated by using faulty data from a wastewater treatment process. Simulation results verify that the proposed method can achieve accurate prediction outputs and fault diagnosis performance.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"176 ","pages":"Article 112233"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825001256","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel framework for interval prediction neural network model optimized by ellipsoid bundles is designed for data-driven systems with unknown but bounded noise and disturbances. Firstly, a point prediction neural network model is constructed with input and output data, the prediction error is assumed to be unknown but bounded. Then, a feasible set related to the output weights of the neural network model is described by ellipsoid bundles, which allows decreasing conservatism compared to other types of sets such as zonotopes or ellipsoids. To obtain a more precise description shape of the feasible set, an optimal iterative formula is theoretically derived by minimizing the Frobenius norm of ellipsoid bundles. Next, an outer bounding box is established to obtain the maximum and minimum weights that satisfy the feasible set, thereby providing the output prediction interval. This interval characterizes the systems’ disturbance and can be used as the threshold when dealing with fault diagnosis applications. Finally, the effectiveness of the proposed interval neural network model is demonstrated by using faulty data from a wastewater treatment process. Simulation results verify that the proposed method can achieve accurate prediction outputs and fault diagnosis performance.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.