Outlier-robust tri-percentile and truncated maximum likelihood estimators of parameters of weibull radar clutter

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Peng-Jia Zou, Peng-Lang Shui, Xiang Liang
{"title":"Outlier-robust tri-percentile and truncated maximum likelihood estimators of parameters of weibull radar clutter","authors":"Peng-Jia Zou,&nbsp;Peng-Lang Shui,&nbsp;Xiang Liang","doi":"10.1016/j.sigpro.2025.109986","DOIUrl":null,"url":null,"abstract":"<div><div>Weibull distributions have gained much concern for the versatility in modelling radar clutter such as sea, ground, and weather clutters. Most existing parameter estimation methods are sensitive to outliers and have degraded accuracy in real clutter environments with outliers. This paper proposes two classes of outlier-robust parameter estimators of Weibull distribution. One is the tri-percentile (TriP) estimator, where the shape parameter is estimated from the ratio of two sample percentiles and the scale parameter is estimated from the third sample percentile. The relative root mean square error (RRMSE) of the shape parameter is proved to be independent of the two parameters. Moreover, the optimal position setup of the percentiles is chosen to minimize estimation errors. The other is the iterative truncated maximum likelihood (TML) estimator, which obtains more accurate robust estimates. It is shown that the RRMSE of the shape parameter is also independent of the two parameters. The ML estimator is a special example of the iterative TML estimator. Finally, experiments with simulated data and measured radar data are made to compare the performance of the TriP and TML estimators with that of the ML estimators and other existing estimators in the presence of outliers in data.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"234 ","pages":"Article 109986"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001008","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Weibull distributions have gained much concern for the versatility in modelling radar clutter such as sea, ground, and weather clutters. Most existing parameter estimation methods are sensitive to outliers and have degraded accuracy in real clutter environments with outliers. This paper proposes two classes of outlier-robust parameter estimators of Weibull distribution. One is the tri-percentile (TriP) estimator, where the shape parameter is estimated from the ratio of two sample percentiles and the scale parameter is estimated from the third sample percentile. The relative root mean square error (RRMSE) of the shape parameter is proved to be independent of the two parameters. Moreover, the optimal position setup of the percentiles is chosen to minimize estimation errors. The other is the iterative truncated maximum likelihood (TML) estimator, which obtains more accurate robust estimates. It is shown that the RRMSE of the shape parameter is also independent of the two parameters. The ML estimator is a special example of the iterative TML estimator. Finally, experiments with simulated data and measured radar data are made to compare the performance of the TriP and TML estimators with that of the ML estimators and other existing estimators in the presence of outliers in data.
威布尔雷达杂波参数的离群鲁棒三百分位和截断极大似然估计
威布尔分布在模拟雷达杂波(如海洋、地面和天气杂波)中的多功能性得到了广泛关注。现有的参数估计方法大多对异常值敏感,在存在异常值的真实杂波环境下精度下降。提出了两类威布尔分布的离群鲁棒参数估计量。一种是三百分位数(TriP)估计器,其中形状参数由两个样本百分位数的比值估计,规模参数由第三个样本百分位数估计。证明了形状参数的相对均方根误差(RRMSE)与这两个参数无关。此外,还选择了最优的百分位数位置设置,使估计误差最小。另一种是迭代截断极大似然(TML)估计,它能得到更精确的鲁棒估计。结果表明,形状参数的RRMSE也与这两个参数无关。ML估计器是迭代TML估计器的一个特殊例子。最后,利用模拟数据和雷达实测数据进行了实验,比较了TriP和TML估计器与ML估计器和其他现有估计器在数据中存在异常值时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信