Optimizing Input Selection for Cardiac Model Training and Inference: An Efficient 3D Convolutional Neural Networks-Based Approach to Automate Coronary Angiogram Video Selection

Shih-Sheng Chang MD, PhD , Behrouz Rostami PhD , Gerardo LoRusso MD , Chia-Hao Liu MD , Mohamad Alkhouli MD
{"title":"Optimizing Input Selection for Cardiac Model Training and Inference: An Efficient 3D Convolutional Neural Networks-Based Approach to Automate Coronary Angiogram Video Selection","authors":"Shih-Sheng Chang MD, PhD ,&nbsp;Behrouz Rostami PhD ,&nbsp;Gerardo LoRusso MD ,&nbsp;Chia-Hao Liu MD ,&nbsp;Mohamad Alkhouli MD","doi":"10.1016/j.mcpdig.2025.100195","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop an efficient and automated method for selecting appropriate coronary angiography videos for training deep learning models, thereby improving the accuracy and efficiency of medical image analysis.</div></div><div><h3>Patients and Methods</h3><div>We developed deep learning models using 232 coronary angiographic studies from the Mayo Clinic. We utilized 2 state-of-the-art convolutional neural networks (CNN: ResNet and X3D) to identify low-quality angiograms through binary classification (satisfactory/unsatisfactory). Ground truth for the quality of the input angiogram was determined by 2 experienced cardiologists. We validated the developed model in an independent dataset of 3208 procedures from 3 Mayo sites.</div></div><div><h3>Results</h3><div>The 3D-CNN models outperformed their 2D counterparts, with the X3D-L model achieving superior performance across all metrics (AUC 0.98, accuracy 0.96, precision 0.87, and F1 score 0.92). Compared with 3D models, 2D architectures are smaller and less computationally complex. Despite having a 3D architecture, the X3D-L model had lower computational demand (19.34 Giga Multiply Accumulate Operation) and parameter count (5.34 M) than 2D models. When validating models on the independent dataset, slight decreases in all metrics were observed, but AUC and accuracy remained robust (0.95 and 0.92, respectively, for the X3D-L model).</div></div><div><h3>Conclusion</h3><div>We developed a rapid and effective method for automating the selection of coronary angiogram video clips using 3D-CNNs, potentially improving model accuracy and efficiency in clinical applications. The X3D-L model reports a balanced trade-off between computational efficiency and complexity, making it suitable for real-life clinical applications.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"3 1","pages":"Article 100195"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761225000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To develop an efficient and automated method for selecting appropriate coronary angiography videos for training deep learning models, thereby improving the accuracy and efficiency of medical image analysis.

Patients and Methods

We developed deep learning models using 232 coronary angiographic studies from the Mayo Clinic. We utilized 2 state-of-the-art convolutional neural networks (CNN: ResNet and X3D) to identify low-quality angiograms through binary classification (satisfactory/unsatisfactory). Ground truth for the quality of the input angiogram was determined by 2 experienced cardiologists. We validated the developed model in an independent dataset of 3208 procedures from 3 Mayo sites.

Results

The 3D-CNN models outperformed their 2D counterparts, with the X3D-L model achieving superior performance across all metrics (AUC 0.98, accuracy 0.96, precision 0.87, and F1 score 0.92). Compared with 3D models, 2D architectures are smaller and less computationally complex. Despite having a 3D architecture, the X3D-L model had lower computational demand (19.34 Giga Multiply Accumulate Operation) and parameter count (5.34 M) than 2D models. When validating models on the independent dataset, slight decreases in all metrics were observed, but AUC and accuracy remained robust (0.95 and 0.92, respectively, for the X3D-L model).

Conclusion

We developed a rapid and effective method for automating the selection of coronary angiogram video clips using 3D-CNNs, potentially improving model accuracy and efficiency in clinical applications. The X3D-L model reports a balanced trade-off between computational efficiency and complexity, making it suitable for real-life clinical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信