Privacy-preserving cross-network service recommendation via federated learning of unified user representations

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohamed Gaith Ayadi , Haithem Mezni , Hela Elmannai , Reem Ibrahim Alkanhel
{"title":"Privacy-preserving cross-network service recommendation via federated learning of unified user representations","authors":"Mohamed Gaith Ayadi ,&nbsp;Haithem Mezni ,&nbsp;Hela Elmannai ,&nbsp;Reem Ibrahim Alkanhel","doi":"10.1016/j.datak.2025.102422","DOIUrl":null,"url":null,"abstract":"<div><div>With the emergence of cloud computing, the Internet of Things, and other large-scale environments, recommender systems have been faced with several issues, mainly (i) the distribution of user–item data across multiple information networks, (ii) privacy restrictions and the partial profiling of users and items caused by this distribution, (iii) the heterogeneity of user–item knowledge in different information networks. Furthermore, most approaches perform recommendations based on a single source of information, and do not handle the partial representation of users’ and items’ information in a federated way. Such isolated and non-collaborative behavior, in multi-source and cross-network information settings, often results in inaccurate and low-quality recommendations. To address these issues, we exploit the strengths of network representation learning and federated learning to propose a service recommendation approach in smart service networks. While NRL is employed to learn rich representations of entities (e.g., users, services, IoT objects), federated learning helps collaboratively infer a unified profile of users and items, based on the concept of <em>anchor user</em>, which are bridge entities connecting multiple information networks. These unified profiles are, finally, fed into a federated recommendation algorithm to select the top-rated services. Using a scenario from the smart healthcare context, the proposed approach was developed and validated on a multiplex information network built from real-world electronic medical records (157 diseases, 491 symptoms, 273 174 patients, treatments and anchors data). Experimental results under varied federated settings demonstrated the utility of cross-client knowledge (i.e. anchor links) and the collaborative reconstruction of composite embeddings (i.e. user representations) for improving recommendation accuracy. In terms of RMSE@K and MAE@K, our approach achieved an improvement of 54.41% compared to traditional single-network recommendation, as long as the federation and communication scale increased. Moreover, the gap with four federated approaches has reached 19.83 %, highlighting our approach’s ability to map local embeddings (i.e. user’s partial representations) into a complete view.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"158 ","pages":"Article 102422"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000175","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the emergence of cloud computing, the Internet of Things, and other large-scale environments, recommender systems have been faced with several issues, mainly (i) the distribution of user–item data across multiple information networks, (ii) privacy restrictions and the partial profiling of users and items caused by this distribution, (iii) the heterogeneity of user–item knowledge in different information networks. Furthermore, most approaches perform recommendations based on a single source of information, and do not handle the partial representation of users’ and items’ information in a federated way. Such isolated and non-collaborative behavior, in multi-source and cross-network information settings, often results in inaccurate and low-quality recommendations. To address these issues, we exploit the strengths of network representation learning and federated learning to propose a service recommendation approach in smart service networks. While NRL is employed to learn rich representations of entities (e.g., users, services, IoT objects), federated learning helps collaboratively infer a unified profile of users and items, based on the concept of anchor user, which are bridge entities connecting multiple information networks. These unified profiles are, finally, fed into a federated recommendation algorithm to select the top-rated services. Using a scenario from the smart healthcare context, the proposed approach was developed and validated on a multiplex information network built from real-world electronic medical records (157 diseases, 491 symptoms, 273 174 patients, treatments and anchors data). Experimental results under varied federated settings demonstrated the utility of cross-client knowledge (i.e. anchor links) and the collaborative reconstruction of composite embeddings (i.e. user representations) for improving recommendation accuracy. In terms of RMSE@K and MAE@K, our approach achieved an improvement of 54.41% compared to traditional single-network recommendation, as long as the federation and communication scale increased. Moreover, the gap with four federated approaches has reached 19.83 %, highlighting our approach’s ability to map local embeddings (i.e. user’s partial representations) into a complete view.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信