Jie Zhang , Wenxiao Huang , Miaoxin Lu , Fengxian Wang , Mingdong Zhao , Yinhua Li
{"title":"Advanced transformer for high-noise image denoising: Enhanced attention and detail preservation","authors":"Jie Zhang , Wenxiao Huang , Miaoxin Lu , Fengxian Wang , Mingdong Zhao , Yinhua Li","doi":"10.1016/j.image.2025.117286","DOIUrl":null,"url":null,"abstract":"<div><div>In image denoising, the transformer model effectively captures global dependencies within an image due to its self-attention mechanism. This capability enhances the understanding of the overall structure and details of the image during the denoising process. However, the computational complexity of global self-attention increases quadratically with higher spatial resolutions, making it unsuitable for the real-time denoising of high-resolution and high-noise images. And, the use of local windows alone neglects the long-range pixel correlations. Furthermore, the self-attention mechanism applies a global weighting to the pixels of the input image, which can lead to the smoothing or loss of fine details. To enrich structural information and alleviate the computational complexity associated with global self-attention, we propose an edge-enhanced windowed multi-head self-attention mechanism (EWMSA). This mechanism combines edge enhancement with windowed self-attention to reduce computational demands while allowing edge features to better preserve detail and texture information. To mitigate the effects of ineffective features with low weights, we introduce a feed-forward network with a gate control strategy (LGFN). This network adjusts pixel weights to prioritize attention on effective pixels, thereby enhancing their prominence. Furthermore, to compensate for the limitations of window-based self-attention in global pixel utilization, we propose a deformable convolution block (DFCB). This block improves the interaction of contextual information and allows for better adaptation to texture variations within the image. Extensive experiments demonstrate that the proposed ATHID is competitive with other state-of-the-art denoising methods when applied to real-world noise and various synthetic noise levels, effectively addressing the challenges of high-noise image denoising. The code and models are publicly available at <span><span>https://github.com/zzuli407/ATHID</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"136 ","pages":"Article 117286"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000335","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In image denoising, the transformer model effectively captures global dependencies within an image due to its self-attention mechanism. This capability enhances the understanding of the overall structure and details of the image during the denoising process. However, the computational complexity of global self-attention increases quadratically with higher spatial resolutions, making it unsuitable for the real-time denoising of high-resolution and high-noise images. And, the use of local windows alone neglects the long-range pixel correlations. Furthermore, the self-attention mechanism applies a global weighting to the pixels of the input image, which can lead to the smoothing or loss of fine details. To enrich structural information and alleviate the computational complexity associated with global self-attention, we propose an edge-enhanced windowed multi-head self-attention mechanism (EWMSA). This mechanism combines edge enhancement with windowed self-attention to reduce computational demands while allowing edge features to better preserve detail and texture information. To mitigate the effects of ineffective features with low weights, we introduce a feed-forward network with a gate control strategy (LGFN). This network adjusts pixel weights to prioritize attention on effective pixels, thereby enhancing their prominence. Furthermore, to compensate for the limitations of window-based self-attention in global pixel utilization, we propose a deformable convolution block (DFCB). This block improves the interaction of contextual information and allows for better adaptation to texture variations within the image. Extensive experiments demonstrate that the proposed ATHID is competitive with other state-of-the-art denoising methods when applied to real-world noise and various synthetic noise levels, effectively addressing the challenges of high-noise image denoising. The code and models are publicly available at https://github.com/zzuli407/ATHID.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.