Haorui He , Abhirup Banerjee , Robin P. Choudhury , Vicente Grau
{"title":"Deep learning based coronary vessels segmentation in X-ray angiography using temporal information","authors":"Haorui He , Abhirup Banerjee , Robin P. Choudhury , Vicente Grau","doi":"10.1016/j.media.2025.103496","DOIUrl":null,"url":null,"abstract":"<div><div>Invasive coronary angiography (ICA) is the gold standard imaging modality during cardiac interventions. Accurate segmentation of coronary vessels in ICA is required for aiding diagnosis and creating treatment plans. Current automated algorithms for vessel segmentation face task-specific challenges, including motion artifacts and unevenly distributed contrast, as well as the general challenge inherent to X-ray imaging, which is the presence of shadows from overlapping organs in the background. To address these issues, we present Temporal Vessel Segmentation Network (TVS-Net) model that fuses sequential ICA information into a novel densely connected 3D encoder-2D decoder structure with a loss function based on elastic interaction. We develop our model using an ICA dataset comprising 323 samples, split into 173 for training, 82 for validation, and 68 for testing, with a relatively relaxed annotation protocol that produced coarse-grained samples, and achieve 83.4% Dice and 84.3% recall on the test dataset. We additionally perform an external evaluation over 60 images from a local hospital, achieving 78.5% Dice and 82.4% recall and outperforming the state-of-the-art approaches. We also conduct a detailed manual re-segmentation for evaluation only on a subset of the first dataset under strict annotation protocol, achieving a Dice score of 86.2% and recall of 86.3% and surpassing even the coarse-grained gold standard used in training. The results indicate our TVS-Net is effective for multi-frame ICA segmentation, highlights the network’s generalizability and robustness across diverse settings, and showcases the feasibility of weak supervision in ICA segmentation.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103496"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000441","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Invasive coronary angiography (ICA) is the gold standard imaging modality during cardiac interventions. Accurate segmentation of coronary vessels in ICA is required for aiding diagnosis and creating treatment plans. Current automated algorithms for vessel segmentation face task-specific challenges, including motion artifacts and unevenly distributed contrast, as well as the general challenge inherent to X-ray imaging, which is the presence of shadows from overlapping organs in the background. To address these issues, we present Temporal Vessel Segmentation Network (TVS-Net) model that fuses sequential ICA information into a novel densely connected 3D encoder-2D decoder structure with a loss function based on elastic interaction. We develop our model using an ICA dataset comprising 323 samples, split into 173 for training, 82 for validation, and 68 for testing, with a relatively relaxed annotation protocol that produced coarse-grained samples, and achieve 83.4% Dice and 84.3% recall on the test dataset. We additionally perform an external evaluation over 60 images from a local hospital, achieving 78.5% Dice and 82.4% recall and outperforming the state-of-the-art approaches. We also conduct a detailed manual re-segmentation for evaluation only on a subset of the first dataset under strict annotation protocol, achieving a Dice score of 86.2% and recall of 86.3% and surpassing even the coarse-grained gold standard used in training. The results indicate our TVS-Net is effective for multi-frame ICA segmentation, highlights the network’s generalizability and robustness across diverse settings, and showcases the feasibility of weak supervision in ICA segmentation.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.