Graph-constrained analysis for multivariate functional data

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Debangan Dey , Sudipto Banerjee , Martin A. Lindquist , Abhirup Datta
{"title":"Graph-constrained analysis for multivariate functional data","authors":"Debangan Dey ,&nbsp;Sudipto Banerjee ,&nbsp;Martin A. Lindquist ,&nbsp;Abhirup Datta","doi":"10.1016/j.jmva.2025.105428","DOIUrl":null,"url":null,"abstract":"<div><div>The manuscript considers multivariate functional data analysis with a known graphical model among the functional variables representing their conditional relationships (e.g., brain region-level fMRI data with a prespecified connectivity graph among brain regions). Functional Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily estimate an unknown graphical model, and cannot preserve knowledge of a given graph. We propose a method for multivariate functional analysis that exactly conforms to a given inter-variable graph. We first show the equivalence between partially separable functional GGM and graphical Gaussian processes (GP), proposed recently for constructing optimal multivariate covariance functions that retain a given graphical model. The theoretical connection helps to design a new algorithm that leverages Dempster’s covariance selection for obtaining the maximum likelihood estimate of the covariance function for multivariate functional data under graphical constraints. We also show that the finite term truncation of functional GGM basis expansion used in practice is equivalent to a low-rank graphical GP, which is known to oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve marginal distributions while respecting the graph and retaining computational scalability. The benefits of the proposed algorithms are illustrated using empirical experiments and a neuroimaging application.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105428"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000235","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The manuscript considers multivariate functional data analysis with a known graphical model among the functional variables representing their conditional relationships (e.g., brain region-level fMRI data with a prespecified connectivity graph among brain regions). Functional Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily estimate an unknown graphical model, and cannot preserve knowledge of a given graph. We propose a method for multivariate functional analysis that exactly conforms to a given inter-variable graph. We first show the equivalence between partially separable functional GGM and graphical Gaussian processes (GP), proposed recently for constructing optimal multivariate covariance functions that retain a given graphical model. The theoretical connection helps to design a new algorithm that leverages Dempster’s covariance selection for obtaining the maximum likelihood estimate of the covariance function for multivariate functional data under graphical constraints. We also show that the finite term truncation of functional GGM basis expansion used in practice is equivalent to a low-rank graphical GP, which is known to oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve marginal distributions while respecting the graph and retaining computational scalability. The benefits of the proposed algorithms are illustrated using empirical experiments and a neuroimaging application.
多变量函数数据的图约束分析
该手稿考虑了多元功能数据分析,在表示其条件关系的功能变量之间使用已知的图形模型(例如,大脑区域级fMRI数据与大脑区域之间预先指定的连接图)。用于分析多元函数数据的函数高斯图模型(GGM)通常对未知的图模型进行估计,不能保留给定图的知识。我们提出了一种多元泛函分析方法,它完全符合给定的变量间图。我们首先展示了部分可分泛函高斯过程(GGM)和图形高斯过程(GP)之间的等价性,GP最近被提出用于构造保留给定图形模型的最优多元协方差函数。理论联系有助于设计一种新的算法,该算法利用Dempster的协方差选择来获得图形约束下多元函数数据的协方差函数的最大似然估计。我们还证明了在实践中使用的泛函GGM基展开的有限项截断等价于已知具有过光滑边缘分布的低秩图形GP。为了解决这个问题,我们扩展了我们的算法,以更好地保留边缘分布,同时尊重图和保留计算可扩展性。所提出的算法的好处是用经验实验和神经成像应用说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信