Transition from preclinical to clinical application of CTLA4-Ig co-stimulation blockage in beta-cell replacement therapy

IF 3.6 2区 医学 Q2 IMMUNOLOGY
Quentin Perrier , Johan Noble , Sandrine Lablanche
{"title":"Transition from preclinical to clinical application of CTLA4-Ig co-stimulation blockage in beta-cell replacement therapy","authors":"Quentin Perrier ,&nbsp;Johan Noble ,&nbsp;Sandrine Lablanche","doi":"10.1016/j.trre.2025.100913","DOIUrl":null,"url":null,"abstract":"<div><div>Beta-cell replacement therapies, including islet and pancreas transplantation, offer promising results in term of glycemic control for patients with type 1 diabetes experiencing high glycemic variability and severe hypoglycemia. However, long-term insulin independence remains challenging due to progressive graft function decline. Immunosuppressive regimens, especially calcineurin inhibitors such as tacrolimus, are known to be diabetogenic, contributing to the paradox of impaired beta-cell function in a diabetes treatment setting. Recent studies have focused on CTLA4-Ig (e.g., belatacept) as a potential alternative to calcineurin inhibitors, showing promising results in preclinical and clinical models. This review summarizes key advancements and remaining challenges in CTLA4 applications for beta-cell replacement. First, genetic engineering approaches aiming for CTLA4 expression in islets demonstrated initial success in delaying rejection but remain hindered by immune escape and limited integration efficacy. Coating techniques and exogenous CTLA4-Ig administration offer simpler, albeit transient, immunosuppressive effects, which, combined with encapsulation technologies, can improve graft survival. In non-human primate models, islet transplantation with immunosuppressant regimen using CTLA4-Ig combined with agents such as sirolimus or anti-CD154 has shown extended insulin independence, though full immune tolerance remains elusive. A limited number of human studies using belatacept for beta-cell replacement indicate reduced HbA1c levels and avoidance of severe hypoglycemia, yet consistent absence of rejection remains unachieved. Future research on BCR with CTLA4-Ig should explore graft survival in human islets transplantation and refine immunosuppressive protocols to leverage CTLA4-Ig potential in improving long-term graft function, thus enhancing the sustainability of CTLA4-Ig in clinical beta-cell replacement approach.</div></div>","PeriodicalId":48973,"journal":{"name":"Transplantation Reviews","volume":"39 2","pages":"Article 100913"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955470X25000138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Beta-cell replacement therapies, including islet and pancreas transplantation, offer promising results in term of glycemic control for patients with type 1 diabetes experiencing high glycemic variability and severe hypoglycemia. However, long-term insulin independence remains challenging due to progressive graft function decline. Immunosuppressive regimens, especially calcineurin inhibitors such as tacrolimus, are known to be diabetogenic, contributing to the paradox of impaired beta-cell function in a diabetes treatment setting. Recent studies have focused on CTLA4-Ig (e.g., belatacept) as a potential alternative to calcineurin inhibitors, showing promising results in preclinical and clinical models. This review summarizes key advancements and remaining challenges in CTLA4 applications for beta-cell replacement. First, genetic engineering approaches aiming for CTLA4 expression in islets demonstrated initial success in delaying rejection but remain hindered by immune escape and limited integration efficacy. Coating techniques and exogenous CTLA4-Ig administration offer simpler, albeit transient, immunosuppressive effects, which, combined with encapsulation technologies, can improve graft survival. In non-human primate models, islet transplantation with immunosuppressant regimen using CTLA4-Ig combined with agents such as sirolimus or anti-CD154 has shown extended insulin independence, though full immune tolerance remains elusive. A limited number of human studies using belatacept for beta-cell replacement indicate reduced HbA1c levels and avoidance of severe hypoglycemia, yet consistent absence of rejection remains unachieved. Future research on BCR with CTLA4-Ig should explore graft survival in human islets transplantation and refine immunosuppressive protocols to leverage CTLA4-Ig potential in improving long-term graft function, thus enhancing the sustainability of CTLA4-Ig in clinical beta-cell replacement approach.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transplantation Reviews
Transplantation Reviews IMMUNOLOGY-TRANSPLANTATION
CiteScore
7.50
自引率
2.50%
发文量
40
审稿时长
29 days
期刊介绍: Transplantation Reviews contains state-of-the-art review articles on both clinical and experimental transplantation. The journal features invited articles by authorities in immunology, transplantation medicine and surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信