GenCeption: Evaluate vision LLMs with unlabeled unimodal data

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lele Cao , Valentin Buchner , Zineb Senane , Fangkai Yang
{"title":"GenCeption: Evaluate vision LLMs with unlabeled unimodal data","authors":"Lele Cao ,&nbsp;Valentin Buchner ,&nbsp;Zineb Senane ,&nbsp;Fangkai Yang","doi":"10.1016/j.csl.2025.101785","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs’ tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, is expected to result in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@<span><math><mi>T</mi></math></span> metric. While GenCeption is principally applicable to MLLMs across various modalities, this paper focuses on its implementation and validation for Vision LLMs (VLLMs). Based on the GenCeption method, we establish the MMECeption benchmark for evaluating VLLMs, and compare the performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption’s effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lag behind human performance and struggle especially with text-intensive tasks.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"93 ","pages":"Article 101785"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230825000105","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs’ tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, is expected to result in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@T metric. While GenCeption is principally applicable to MLLMs across various modalities, this paper focuses on its implementation and validation for Vision LLMs (VLLMs). Based on the GenCeption method, we establish the MMECeption benchmark for evaluating VLLMs, and compare the performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption’s effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lag behind human performance and struggle especially with text-intensive tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信