Lele Cao , Valentin Buchner , Zineb Senane , Fangkai Yang
{"title":"GenCeption: Evaluate vision LLMs with unlabeled unimodal data","authors":"Lele Cao , Valentin Buchner , Zineb Senane , Fangkai Yang","doi":"10.1016/j.csl.2025.101785","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs’ tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, is expected to result in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@<span><math><mi>T</mi></math></span> metric. While GenCeption is principally applicable to MLLMs across various modalities, this paper focuses on its implementation and validation for Vision LLMs (VLLMs). Based on the GenCeption method, we establish the MMECeption benchmark for evaluating VLLMs, and compare the performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption’s effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lag behind human performance and struggle especially with text-intensive tasks.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"93 ","pages":"Article 101785"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230825000105","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs’ tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, is expected to result in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@ metric. While GenCeption is principally applicable to MLLMs across various modalities, this paper focuses on its implementation and validation for Vision LLMs (VLLMs). Based on the GenCeption method, we establish the MMECeption benchmark for evaluating VLLMs, and compare the performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption’s effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lag behind human performance and struggle especially with text-intensive tasks.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.