Mukesh Kumar , Anusree S. Chandran , Manikantan R. Nair , Tribeni Roy , Santosh Kumar Tamang
{"title":"Mechanistic insights into nanoscale heat transfer on platinum surfaces using molecular dynamics simulations","authors":"Mukesh Kumar , Anusree S. Chandran , Manikantan R. Nair , Tribeni Roy , Santosh Kumar Tamang","doi":"10.1016/j.commatsci.2025.113817","DOIUrl":null,"url":null,"abstract":"<div><div>Cooling microelectronics devices is challenging, and phase change heat transfer at the nanoscale is considered an effective method to overcome this. However, designing heat transfer at the nanoscale requires a mechanistic understanding of the solid–liquid interface at the molecular level. Hence, this study focuses on investigating the interactions between liquid coolant (water nanodroplets) and solid surface (platinum) using molecular dynamics simulations, focusing on how varying energy coefficients (α) influence heat transfer. The simulation results indicate that the wettability of the platinum surface is significantly affected by variations in energy coefficients. At a high energy coefficient (α = 3.0), the contact angle is 49.09˚, indicating higher wettability, while a low energy coefficient (α = 0.1) results in lower wettability. Improved wettability indirectly corresponds to enhanced heat transfer, as higher wettability indicates a better surface area for heat transfer. Further, potential energy analysis conducted as part of the work shows a decreasing trend with increasing energy coefficient value, indicating the reason for improved wettability. From the study, it was also observed that higher wettability has contributed towards better heat transfer, and this has been analyzed using the changes in the heat flux concerning increasing energy coefficient values. From the results, an increasing trend in the values of average heat flux with a higher value of 1.6 × 10<sup>−5</sup> Wm<sup>−2</sup> for α = 3.0 and a lesser value of −4.40 × 10<sup>−7</sup> Wm<sup>−2</sup> for α = 0.1 was observed. This confirms that heat transfer is better at higher energy coefficients. This study highlights the pivotal role of energy coefficients in optimizing heat transfer at the nanoscale, providing valuable insights for designing advanced thermal management systems.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"252 ","pages":"Article 113817"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001600","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cooling microelectronics devices is challenging, and phase change heat transfer at the nanoscale is considered an effective method to overcome this. However, designing heat transfer at the nanoscale requires a mechanistic understanding of the solid–liquid interface at the molecular level. Hence, this study focuses on investigating the interactions between liquid coolant (water nanodroplets) and solid surface (platinum) using molecular dynamics simulations, focusing on how varying energy coefficients (α) influence heat transfer. The simulation results indicate that the wettability of the platinum surface is significantly affected by variations in energy coefficients. At a high energy coefficient (α = 3.0), the contact angle is 49.09˚, indicating higher wettability, while a low energy coefficient (α = 0.1) results in lower wettability. Improved wettability indirectly corresponds to enhanced heat transfer, as higher wettability indicates a better surface area for heat transfer. Further, potential energy analysis conducted as part of the work shows a decreasing trend with increasing energy coefficient value, indicating the reason for improved wettability. From the study, it was also observed that higher wettability has contributed towards better heat transfer, and this has been analyzed using the changes in the heat flux concerning increasing energy coefficient values. From the results, an increasing trend in the values of average heat flux with a higher value of 1.6 × 10−5 Wm−2 for α = 3.0 and a lesser value of −4.40 × 10−7 Wm−2 for α = 0.1 was observed. This confirms that heat transfer is better at higher energy coefficients. This study highlights the pivotal role of energy coefficients in optimizing heat transfer at the nanoscale, providing valuable insights for designing advanced thermal management systems.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.