Wentao Qi, Weimin Wang, Zhaopeng Gu, Jiale Wang, Kexin Han
{"title":"Investigation on the characteristics of rub-impact and misalignment faults in aero-engines during diving-climbing maneuver","authors":"Wentao Qi, Weimin Wang, Zhaopeng Gu, Jiale Wang, Kexin Han","doi":"10.1016/j.jsv.2025.119019","DOIUrl":null,"url":null,"abstract":"<div><div>The increasingly compact design of aero-engines makes rotors highly susceptible to rub-impact and misalignment faults under the maneuver loads generated during flight. This paper aims to explore how these faults influence the dynamic characteristics of the rotors and their overall interaction with the casing within the framework of whole aero-engine. First, a dual-rotor-casing system model for a certain aero-engine is proposed, taking into account the coupling between the flexible deformation of the casing through transfer function and the interaction of rub-impact forces as well as the bearing forces. Then, the rub response of the dual-rotor-casing coupling system is calculated by the linear and nonlinear node-separated Hilber-Hughes-Taylor-α (HHT-α) method, which more closely aligns with the actual working conditions of aero-engines. The influence of rub-impact parameters, damper structure, and casing on rub response is explored, with further analysis of the characteristics of rub-misalignment coupled faults in rotor dynamics. Finally, the accuracy of the proposed dynamic model of whole aero-engine and the computational method under maneuvering flight conditions is validated through experiments. The results can provide new insight for rub preventing design for new high performance aircraft.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"606 ","pages":"Article 119019"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25000938","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasingly compact design of aero-engines makes rotors highly susceptible to rub-impact and misalignment faults under the maneuver loads generated during flight. This paper aims to explore how these faults influence the dynamic characteristics of the rotors and their overall interaction with the casing within the framework of whole aero-engine. First, a dual-rotor-casing system model for a certain aero-engine is proposed, taking into account the coupling between the flexible deformation of the casing through transfer function and the interaction of rub-impact forces as well as the bearing forces. Then, the rub response of the dual-rotor-casing coupling system is calculated by the linear and nonlinear node-separated Hilber-Hughes-Taylor-α (HHT-α) method, which more closely aligns with the actual working conditions of aero-engines. The influence of rub-impact parameters, damper structure, and casing on rub response is explored, with further analysis of the characteristics of rub-misalignment coupled faults in rotor dynamics. Finally, the accuracy of the proposed dynamic model of whole aero-engine and the computational method under maneuvering flight conditions is validated through experiments. The results can provide new insight for rub preventing design for new high performance aircraft.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.