lasertram: A Python library for time resolved analysis of laser ablation inductively coupled plasma mass spectrometry data

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jordan Lubbers , Adam J.R. Kent , Chris Russo
{"title":"lasertram: A Python library for time resolved analysis of laser ablation inductively coupled plasma mass spectrometry data","authors":"Jordan Lubbers ,&nbsp;Adam J.R. Kent ,&nbsp;Chris Russo","doi":"10.1016/j.acags.2025.100225","DOIUrl":null,"url":null,"abstract":"<div><div>Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data has a wide variety of uses in the geosciences for in-situ chemical analysis of complex natural materials. Improvements to instrument capabilities and operating software have drastically reduced the time required to generate large volumes of data relative to previous methodologies. Raw data from LA-ICP-MS, however, is in counts per unit time (typically counts per second), not elemental concentrations and converting these count ratesto concentrations requires additional processing. For complex materials where the ablated volume may contain a range of material compositions, a moderate amount of user input is also required if appropriate concentrations are to be accurately calculated. In geologic materials such as glasses and minerals that potentially have numerous heterogeneities (e.g., microlites or other inclusions) within them, this is typically determiningwhether the total ablation signal should be filtered to remove these heterogeneities. This necessitates that the LA-ICP-MS data processing pipeline is one that is not automated, but is also designed to enable rapid and efficient processing of large volumes of data.</div><div>Here we introduce <figure><img></figure> , a Python library for the time resolved analysis of LA-ICP-MS data. We outline its mathematical theory, code structure, and provide an example of how it can be used to provide the time resolved analysis necessitated by LA-ICP-MS data of complex geologic materials. Throughout the <figure><img></figure> pipeline we show how metadata and data are incrementally added to the objects created such that virtually any aspect of an experiment may be interrogated and its quality assessed. We also show, that when combined with other Python libraries for building graphical user interfaces, it can be utilized outside of a pure scripting environment. <figure><img></figure> can be found at <span><span>https://doi.org/10.5066/P1DZUR3Z</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100225"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data has a wide variety of uses in the geosciences for in-situ chemical analysis of complex natural materials. Improvements to instrument capabilities and operating software have drastically reduced the time required to generate large volumes of data relative to previous methodologies. Raw data from LA-ICP-MS, however, is in counts per unit time (typically counts per second), not elemental concentrations and converting these count ratesto concentrations requires additional processing. For complex materials where the ablated volume may contain a range of material compositions, a moderate amount of user input is also required if appropriate concentrations are to be accurately calculated. In geologic materials such as glasses and minerals that potentially have numerous heterogeneities (e.g., microlites or other inclusions) within them, this is typically determiningwhether the total ablation signal should be filtered to remove these heterogeneities. This necessitates that the LA-ICP-MS data processing pipeline is one that is not automated, but is also designed to enable rapid and efficient processing of large volumes of data.
Here we introduce
, a Python library for the time resolved analysis of LA-ICP-MS data. We outline its mathematical theory, code structure, and provide an example of how it can be used to provide the time resolved analysis necessitated by LA-ICP-MS data of complex geologic materials. Throughout the
pipeline we show how metadata and data are incrementally added to the objects created such that virtually any aspect of an experiment may be interrogated and its quality assessed. We also show, that when combined with other Python libraries for building graphical user interfaces, it can be utilized outside of a pure scripting environment.
can be found at https://doi.org/10.5066/P1DZUR3Z.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信