Jinsheng Ji , Leilei Wang , Jianfeng Wang , Yuchi Fang , Zhangping Hu , Qiyu Gao , Deliang Lei , Xiaohong Zhan
{"title":"Enhanced strength-ductility of deposited Al-Mg-Sc alloy through interlayer hammering and in-situ heating","authors":"Jinsheng Ji , Leilei Wang , Jianfeng Wang , Yuchi Fang , Zhangping Hu , Qiyu Gao , Deliang Lei , Xiaohong Zhan","doi":"10.1016/j.jmatprotec.2025.118791","DOIUrl":null,"url":null,"abstract":"<div><div>Wire-arc directed energy deposition (DED-Arc) combined with interlayer plastic strengthening has shown good advantages and feasibility in manufacturing high-performance components. However, simultaneously improving strength and ductility remains challenging. Based on DED-Arc technology, this study proposed a hybrid manufacturing approach integrating interlayer hammering and in-situ heating. The impacts of the novel process on pore inhibition, microstructure evolution, and mechanical properties were explored. The results indicated that, compared to the conventionally deposited alloy, the alloy produced via the novel process demonstrates increases of 28.3 % in yield strength, 22.2 % in ultimate tensile strength, and 21.8 % in ductility. The simultaneous improvement of alloy strength and ductility arose from the combined effects of the thermal and mechanical forces, primarily through pore inhibition, grain refinement, precipitation strengthening, and increased dislocation density. This study overcame the strength-ductility trade-off, providing new insights for improving techniques to enhance the performance of DED-Arc components.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118791"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625000810","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wire-arc directed energy deposition (DED-Arc) combined with interlayer plastic strengthening has shown good advantages and feasibility in manufacturing high-performance components. However, simultaneously improving strength and ductility remains challenging. Based on DED-Arc technology, this study proposed a hybrid manufacturing approach integrating interlayer hammering and in-situ heating. The impacts of the novel process on pore inhibition, microstructure evolution, and mechanical properties were explored. The results indicated that, compared to the conventionally deposited alloy, the alloy produced via the novel process demonstrates increases of 28.3 % in yield strength, 22.2 % in ultimate tensile strength, and 21.8 % in ductility. The simultaneous improvement of alloy strength and ductility arose from the combined effects of the thermal and mechanical forces, primarily through pore inhibition, grain refinement, precipitation strengthening, and increased dislocation density. This study overcame the strength-ductility trade-off, providing new insights for improving techniques to enhance the performance of DED-Arc components.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.