Digital twin of dynamics for parallel kinematic machine with distributed force/position interaction

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Fangyan Zheng , Xinghui Han , Lin Hua , Wenjun Xu
{"title":"Digital twin of dynamics for parallel kinematic machine with distributed force/position interaction","authors":"Fangyan Zheng ,&nbsp;Xinghui Han ,&nbsp;Lin Hua ,&nbsp;Wenjun Xu","doi":"10.1016/j.jmsy.2025.02.019","DOIUrl":null,"url":null,"abstract":"<div><div>Extensibility is significant for digital twin (DT) manufacturing systems. However, existing DT models mainly focus on a specific task in manufacturing. The main challenge lies in the specific physical model when addressing different tasks. In fact, the dynamics of machines are the physical basis for most applications, e.g., motion planning, production scheduling, process monitoring, machine maintenance, and so on. Therefore, the Digital Twin of dynamics (DTOD) for machines will be a foundation for a highly integrated and extensible DT system. However, due to the challenges in real-time dynamic modeling and the corresponding data interaction methods, the DTOD for parallel kinematic machines (PKM) has not been realized.</div><div>Facing this challenge, this paper develops a DTOD for PKM with distributed force/position interaction. Firstly, a simplified rigid-flexible coupling dynamic model of PKM, considering link deformations, is established for real-time calculation. Then, a distributed position/force interaction method based on Kalman filter-based data fusion is proposed to realize high-performance data interaction between cyber and physical space. On this basis, a five-dimension digital twin model for DTOD of PKM is established. Further, the DTOD system with an architecture comprising dual central processors and multiple distributed edge executors/sensors is developed and validated by aircraft gear manufacturing, showing 80 % prediction accuracy of dynamic error. Finally, to show the extensibility, integrated error correction for aircraft gear manufacturing is proposed as an extended application of the DTOD system. The gear error is reduced to 218 μm (with error correction) from 503 μm, representing a reduction of about 57 %, showing the high performance of the developed DTOD system and its high application potential.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 70-88"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027861252500055X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extensibility is significant for digital twin (DT) manufacturing systems. However, existing DT models mainly focus on a specific task in manufacturing. The main challenge lies in the specific physical model when addressing different tasks. In fact, the dynamics of machines are the physical basis for most applications, e.g., motion planning, production scheduling, process monitoring, machine maintenance, and so on. Therefore, the Digital Twin of dynamics (DTOD) for machines will be a foundation for a highly integrated and extensible DT system. However, due to the challenges in real-time dynamic modeling and the corresponding data interaction methods, the DTOD for parallel kinematic machines (PKM) has not been realized.
Facing this challenge, this paper develops a DTOD for PKM with distributed force/position interaction. Firstly, a simplified rigid-flexible coupling dynamic model of PKM, considering link deformations, is established for real-time calculation. Then, a distributed position/force interaction method based on Kalman filter-based data fusion is proposed to realize high-performance data interaction between cyber and physical space. On this basis, a five-dimension digital twin model for DTOD of PKM is established. Further, the DTOD system with an architecture comprising dual central processors and multiple distributed edge executors/sensors is developed and validated by aircraft gear manufacturing, showing 80 % prediction accuracy of dynamic error. Finally, to show the extensibility, integrated error correction for aircraft gear manufacturing is proposed as an extended application of the DTOD system. The gear error is reduced to 218 μm (with error correction) from 503 μm, representing a reduction of about 57 %, showing the high performance of the developed DTOD system and its high application potential.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信