The effect of proton irradiation dose rate on the evolution of microstructure in Zr alloys: A synchrotron microbeam X-ray, TEM, and APT study

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ö. Koç , R. Thomas , B. Jenkins , C. Hofer , Z. Hegedüs , U. Lienert , R.W. Harrison , M. Preuss , T. Ungár , P. Frankel
{"title":"The effect of proton irradiation dose rate on the evolution of microstructure in Zr alloys: A synchrotron microbeam X-ray, TEM, and APT study","authors":"Ö. Koç ,&nbsp;R. Thomas ,&nbsp;B. Jenkins ,&nbsp;C. Hofer ,&nbsp;Z. Hegedüs ,&nbsp;U. Lienert ,&nbsp;R.W. Harrison ,&nbsp;M. Preuss ,&nbsp;T. Ungár ,&nbsp;P. Frankel","doi":"10.1016/j.jnucmat.2025.155721","DOIUrl":null,"url":null,"abstract":"<div><div>Protons are increasingly used as a surrogate for neutrons to study radiation damage of engineering alloys used in the core of a nuclear reactor, enabling high fluences in comparatively short times. However, the accelerated damage rate of protons is usually compensated by an increased irradiation temperature to assist diffusion. To better understand dose rate effects on microstructure evolution during radiation damage, recrystallized Low-Sn ZIRLO and Zircaloy-2 were proton-irradiated to 0.15 dpa at 320 °C using nominal dose rates of 1.3, 2.5, and 5.2 × 10<sup>−5</sup> dpa/s. Depth profiling using microbeam synchrotron XRD was conducted across the 30 µm deep irradiated regions for line profile analysis, enabling dislocation line density determination. We found no significant difference in dislocation density among the different dose rates for Zircaloy-2 while Low-Sn ZIRLO displayed dose rate sensitive microstructural evolution. However, Low-Sn ZIRLO exhibited a significantly lower overall dislocation density compared to Zircaloy-2 samples at all dose rates. (S)TEM analysis of the samples showed clear 〈a〉 loop alignment in Zircaloy-2, while this was less pronounced in Low-Sn ZIRLO. APT analysis conducted on Low-Sn ZIRLO specimens showed the early onset of irradiation induced nanoclusters of Nb, where the clusters were observed to be comparatively smaller in the sample exposed to high dose rate irradiation. Overall, the integration of different techniques has provided a more comprehensive understanding of the early-stage damage evolution under differing damage accumulation rates.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"608 ","pages":"Article 155721"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525001163","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Protons are increasingly used as a surrogate for neutrons to study radiation damage of engineering alloys used in the core of a nuclear reactor, enabling high fluences in comparatively short times. However, the accelerated damage rate of protons is usually compensated by an increased irradiation temperature to assist diffusion. To better understand dose rate effects on microstructure evolution during radiation damage, recrystallized Low-Sn ZIRLO and Zircaloy-2 were proton-irradiated to 0.15 dpa at 320 °C using nominal dose rates of 1.3, 2.5, and 5.2 × 10−5 dpa/s. Depth profiling using microbeam synchrotron XRD was conducted across the 30 µm deep irradiated regions for line profile analysis, enabling dislocation line density determination. We found no significant difference in dislocation density among the different dose rates for Zircaloy-2 while Low-Sn ZIRLO displayed dose rate sensitive microstructural evolution. However, Low-Sn ZIRLO exhibited a significantly lower overall dislocation density compared to Zircaloy-2 samples at all dose rates. (S)TEM analysis of the samples showed clear 〈a〉 loop alignment in Zircaloy-2, while this was less pronounced in Low-Sn ZIRLO. APT analysis conducted on Low-Sn ZIRLO specimens showed the early onset of irradiation induced nanoclusters of Nb, where the clusters were observed to be comparatively smaller in the sample exposed to high dose rate irradiation. Overall, the integration of different techniques has provided a more comprehensive understanding of the early-stage damage evolution under differing damage accumulation rates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信