Targeting FEN1/EXO1 to enhance efficacy of PARP inhibition in triple-negative breast cancer

IF 5 2区 医学 Q2 Medicine
Mallory I. Frederick , Elicia Fyle , Anna Clouvel , Djihane Abdesselam , Saima Hassan
{"title":"Targeting FEN1/EXO1 to enhance efficacy of PARP inhibition in triple-negative breast cancer","authors":"Mallory I. Frederick ,&nbsp;Elicia Fyle ,&nbsp;Anna Clouvel ,&nbsp;Djihane Abdesselam ,&nbsp;Saima Hassan","doi":"10.1016/j.tranon.2025.102337","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. The only targeted therapeutic approach that has emerged for early TNBC patients with BRCA-mutations (BRCA<sup>MUT</sup>) are PARP inhibitors (PARPi). In combination, PARPi may benefit a larger cohort of TNBC patients. We used our previously identified 63-gene signature that was associated with PARPi response to identify candidate genes that could be therapeutic targets. We selected FEN1 for further investigation since its knockdown was associated with an increase in G2/M arrest, DNA damage, and apoptosis. We first tested LNT1, a FEN1/EXO1 inhibitor, in a panel of 10 TNBC cell lines. LNT1 sensitivity was identified predominantly in <em>BRCA1</em>-mutant/deficient cell lines. However, the combination of PARPi and LNT1 demonstrated a synergistic or additive effect in 7/10 cell lines, mainly in <em>BRCA1/2</em> wild-type (BRCA<sup>WT</sup>) and <em>BRCA2</em>-mutant cell lines, with intrinsic and acquired resistance to PARPi. The greatest synergy was observed in a <em>BRCA2</em>-mutant cell line with acquired resistance to olaparib (HCC1395-OlaR), with a combination index value of 0.20. In the synergistic cell lines, BT549 (BRCA<sup>WT</sup>) and HCC1395-OlaR, the combination was associated with a rapid progression in DNA replication fork speed, an early and sustained increase in DNA damage in comparison to each of the single-agents. However, in the additive BRCA1/2 wild-type cell lines, MDAMB231 and HCC1806, the combination demonstrated a high DNA damage response that was largely driven by either talazoparib or LNT1. Therefore, targeting FEN1/EXO1 with PARPi is a promising targeted combination approach, particularly in the context of PARPi-resistant and BRCA<sup>WT</sup> TNBC.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"54 ","pages":"Article 102337"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325000683","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. The only targeted therapeutic approach that has emerged for early TNBC patients with BRCA-mutations (BRCAMUT) are PARP inhibitors (PARPi). In combination, PARPi may benefit a larger cohort of TNBC patients. We used our previously identified 63-gene signature that was associated with PARPi response to identify candidate genes that could be therapeutic targets. We selected FEN1 for further investigation since its knockdown was associated with an increase in G2/M arrest, DNA damage, and apoptosis. We first tested LNT1, a FEN1/EXO1 inhibitor, in a panel of 10 TNBC cell lines. LNT1 sensitivity was identified predominantly in BRCA1-mutant/deficient cell lines. However, the combination of PARPi and LNT1 demonstrated a synergistic or additive effect in 7/10 cell lines, mainly in BRCA1/2 wild-type (BRCAWT) and BRCA2-mutant cell lines, with intrinsic and acquired resistance to PARPi. The greatest synergy was observed in a BRCA2-mutant cell line with acquired resistance to olaparib (HCC1395-OlaR), with a combination index value of 0.20. In the synergistic cell lines, BT549 (BRCAWT) and HCC1395-OlaR, the combination was associated with a rapid progression in DNA replication fork speed, an early and sustained increase in DNA damage in comparison to each of the single-agents. However, in the additive BRCA1/2 wild-type cell lines, MDAMB231 and HCC1806, the combination demonstrated a high DNA damage response that was largely driven by either talazoparib or LNT1. Therefore, targeting FEN1/EXO1 with PARPi is a promising targeted combination approach, particularly in the context of PARPi-resistant and BRCAWT TNBC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
2.00%
发文量
314
审稿时长
54 days
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信