David Hajdu , Oier Franco , Markel Sanz-Calle , Giovanni Totis , Jokin Munoa , Gabor Stepan , Zoltan Dombovari
{"title":"Stable tongues induced by milling tool runout","authors":"David Hajdu , Oier Franco , Markel Sanz-Calle , Giovanni Totis , Jokin Munoa , Gabor Stepan , Zoltan Dombovari","doi":"10.1016/j.ijmachtools.2025.104258","DOIUrl":null,"url":null,"abstract":"<div><div>High material removal rates and performances are required for modern milling operations, which may trigger self-excited chatter vibrations. Such undesired vibrations cause unacceptable machined surface quality and premature deterioration of the cutting tool. After many decades of research and successful industrial solutions to this problem, some unexpected phenomena still arise, which put in doubt the effectiveness of well-known chatter theories and of the associated predictive numerical methods. Specifically, runout is a typically ignored consequence of inaccurate fixing of the tool, which has essential impact on the actual cutter-workpiece engagement and on the machined surface quality. The unequal engagement of cutter teeth change the dynamical behavior radically and prevent the application of classical simplifications in the modeling of milling processes. Moreover, in addition to the kinematically different teeth cycle-paths, the coexisting forced vibrations induce early fly-over effects of cutting edges creating new stability boundaries close to the resonant oscillations. This paper presents the underlying principles of this experienced phenomenon related to tool runout and its stabilization effect on chatter vibrations. Focusing on conventional milling cutters, the paper breaks with the widely held assumption that forced vibration has negligible effect on stability in the presence of tool runout. Initial laboratory experiments validate this tool irregularity induced phenomenon and industrial tests demonstrate the technical relevance of the results.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"206 ","pages":"Article 104258"},"PeriodicalIF":14.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695525000136","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
High material removal rates and performances are required for modern milling operations, which may trigger self-excited chatter vibrations. Such undesired vibrations cause unacceptable machined surface quality and premature deterioration of the cutting tool. After many decades of research and successful industrial solutions to this problem, some unexpected phenomena still arise, which put in doubt the effectiveness of well-known chatter theories and of the associated predictive numerical methods. Specifically, runout is a typically ignored consequence of inaccurate fixing of the tool, which has essential impact on the actual cutter-workpiece engagement and on the machined surface quality. The unequal engagement of cutter teeth change the dynamical behavior radically and prevent the application of classical simplifications in the modeling of milling processes. Moreover, in addition to the kinematically different teeth cycle-paths, the coexisting forced vibrations induce early fly-over effects of cutting edges creating new stability boundaries close to the resonant oscillations. This paper presents the underlying principles of this experienced phenomenon related to tool runout and its stabilization effect on chatter vibrations. Focusing on conventional milling cutters, the paper breaks with the widely held assumption that forced vibration has negligible effect on stability in the presence of tool runout. Initial laboratory experiments validate this tool irregularity induced phenomenon and industrial tests demonstrate the technical relevance of the results.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).