Design, synthesis, and biological evaluation of new tetrahydropyrimidine derivatives as multitarget anti-inflammatory agents

Ahmed R. Ali , Ahmed K. Al-Kubeisi , Bassma H. Elwakil , Amira Abd-Elfattah Darwish , Tahani M. Almutairi , Maram M. Elshatanofy , Tareq Q. Alshargabi , Maged A. El Sawy
{"title":"Design, synthesis, and biological evaluation of new tetrahydropyrimidine derivatives as multitarget anti-inflammatory agents","authors":"Ahmed R. Ali ,&nbsp;Ahmed K. Al-Kubeisi ,&nbsp;Bassma H. Elwakil ,&nbsp;Amira Abd-Elfattah Darwish ,&nbsp;Tahani M. Almutairi ,&nbsp;Maram M. Elshatanofy ,&nbsp;Tareq Q. Alshargabi ,&nbsp;Maged A. El Sawy","doi":"10.1016/j.ejmcr.2025.100259","DOIUrl":null,"url":null,"abstract":"<div><div>In an innovative strategy for addressing inflammatory conditions, new 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives were synthesized and subsequently assessed for their multitarget anti-inflammatory effects on various biomarkers, including IL-6, TNF-α, IL-1β, NF-κB, iNOS, MAPK, and ERK, through <em>in vitro</em> experimentation. The presence of LPS was found to significantly increase the levels of IL-6, TNF-α, and IL-1 beta. However, treatment with the tetrahydropyrimidine derivatives, especially compound <strong>4d</strong> with an IC<sub>50</sub> value of 0.4–0.69 μM, led to a substantial reduction in these cytokine levels. Furthermore, LPS was observed to upregulate the expression of MAPK and ERK, as well as NF-κB and iNOS, but these were significantly diminished following treatment with the tetrahydropyrimidines, particularly the compound identified as <strong>4d</strong>, which exhibited an IC<sub>50</sub> value of 0.2–0.62 μM for NF-κB, iNOS and MAPK. The molecular docking studies conducted on the three enzymes revealed notable binding characteristics and affinities, thereby reinforcing their biological functions.</div></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"13 ","pages":"Article 100259"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772417425000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In an innovative strategy for addressing inflammatory conditions, new 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives were synthesized and subsequently assessed for their multitarget anti-inflammatory effects on various biomarkers, including IL-6, TNF-α, IL-1β, NF-κB, iNOS, MAPK, and ERK, through in vitro experimentation. The presence of LPS was found to significantly increase the levels of IL-6, TNF-α, and IL-1 beta. However, treatment with the tetrahydropyrimidine derivatives, especially compound 4d with an IC50 value of 0.4–0.69 μM, led to a substantial reduction in these cytokine levels. Furthermore, LPS was observed to upregulate the expression of MAPK and ERK, as well as NF-κB and iNOS, but these were significantly diminished following treatment with the tetrahydropyrimidines, particularly the compound identified as 4d, which exhibited an IC50 value of 0.2–0.62 μM for NF-κB, iNOS and MAPK. The molecular docking studies conducted on the three enzymes revealed notable binding characteristics and affinities, thereby reinforcing their biological functions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信