MMGCSyn: Explainable synergistic drug combination prediction based on multimodal fusion

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Yongqing Zhang , Hao Yuan , Yuhang Liu , Shuwen Xiong , Zhigan Zhou , Yugui Xu , Xinyu Mao , Meiqin Gong
{"title":"MMGCSyn: Explainable synergistic drug combination prediction based on multimodal fusion","authors":"Yongqing Zhang ,&nbsp;Hao Yuan ,&nbsp;Yuhang Liu ,&nbsp;Shuwen Xiong ,&nbsp;Zhigan Zhou ,&nbsp;Yugui Xu ,&nbsp;Xinyu Mao ,&nbsp;Meiqin Gong","doi":"10.1016/j.future.2025.107784","DOIUrl":null,"url":null,"abstract":"<div><div>Synergistic drug combinations are an effective solution for treating complex diseases. The main challenge is to improve the model performance of the unknown drug combination prediction task. Due to some drugs in the dataset being wholly excluded, it is difficult for the model to effectively extract the data features of these drugs, affecting the model’s accuracy and generalization ability. Unlike previous methods, we propose an interpretable synergistic drug combination prediction model, MMGCSyn, based on multimodal feature fusion. The process is as follows: First, given any (drug, drug, cell line) triple. For drug features, a graph attention network is used to extract drug molecular graph features, a deformable convolutional network is used to extract drug morgan fingerprint features and the spatial feature reconstruction module is used to suppress morgan fingerprint feature redundancy. Multi-layer MLP is used to extract the features of cell line features. Subsequently, feature fusion and prediction are performed through Transformer. We compared five existing methods on three drug combination datasets. The results show that MMGCSyn has achieved the best results and can effectively capture the chemical substructures of drug molecules.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"168 ","pages":"Article 107784"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000792","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Synergistic drug combinations are an effective solution for treating complex diseases. The main challenge is to improve the model performance of the unknown drug combination prediction task. Due to some drugs in the dataset being wholly excluded, it is difficult for the model to effectively extract the data features of these drugs, affecting the model’s accuracy and generalization ability. Unlike previous methods, we propose an interpretable synergistic drug combination prediction model, MMGCSyn, based on multimodal feature fusion. The process is as follows: First, given any (drug, drug, cell line) triple. For drug features, a graph attention network is used to extract drug molecular graph features, a deformable convolutional network is used to extract drug morgan fingerprint features and the spatial feature reconstruction module is used to suppress morgan fingerprint feature redundancy. Multi-layer MLP is used to extract the features of cell line features. Subsequently, feature fusion and prediction are performed through Transformer. We compared five existing methods on three drug combination datasets. The results show that MMGCSyn has achieved the best results and can effectively capture the chemical substructures of drug molecules.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信