VeriTrac: Verifiable and traceable cross-silo federated learning

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Yanxin Xu , Hua Zhang , Zhenyan Liu , Fei Gao , Lei Qiao
{"title":"VeriTrac: Verifiable and traceable cross-silo federated learning","authors":"Yanxin Xu ,&nbsp;Hua Zhang ,&nbsp;Zhenyan Liu ,&nbsp;Fei Gao ,&nbsp;Lei Qiao","doi":"10.1016/j.future.2025.107780","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-silo federated learning enables many clients to train a machine learning model collaboratively, while keeping the raw training data locally. It faces the risks of privacy leakage and malicious participants. In this paper, we introduce a new security risk that malicious clients may disrupt the training process of cross-silo federated learning by falsifying the verification evidences. The verification failure caused by this malicious behavior is not easily distinguishable from that caused by the malicious server falsifying the aggregated model. To address this issue, we design VeriTrac, the first privacy-preserving cross-silo federated learning scheme that supports verifiability and traceability. Before performing the aggregation, the server can utilize the non-private information of clients to verify messages submitted by them to avoid being framed. When the proportion of malicious clients is less than 50%, malicious participants causing the verification error can be traced. In addition, to verify the correctness of the aggregated models, a model vector with a verification factor is constructed and encrypted. The vector is confidential for the server, and the factor is part of the verification evidence and recoverable for clients. Security analysis shows that VeriTrac can guarantee the tracing of malicious participants and the data security of clients. Experimental evaluation shows that computation efficiency and communication efficiency of VeriTrac are acceptable.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"168 ","pages":"Article 107780"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000755","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-silo federated learning enables many clients to train a machine learning model collaboratively, while keeping the raw training data locally. It faces the risks of privacy leakage and malicious participants. In this paper, we introduce a new security risk that malicious clients may disrupt the training process of cross-silo federated learning by falsifying the verification evidences. The verification failure caused by this malicious behavior is not easily distinguishable from that caused by the malicious server falsifying the aggregated model. To address this issue, we design VeriTrac, the first privacy-preserving cross-silo federated learning scheme that supports verifiability and traceability. Before performing the aggregation, the server can utilize the non-private information of clients to verify messages submitted by them to avoid being framed. When the proportion of malicious clients is less than 50%, malicious participants causing the verification error can be traced. In addition, to verify the correctness of the aggregated models, a model vector with a verification factor is constructed and encrypted. The vector is confidential for the server, and the factor is part of the verification evidence and recoverable for clients. Security analysis shows that VeriTrac can guarantee the tracing of malicious participants and the data security of clients. Experimental evaluation shows that computation efficiency and communication efficiency of VeriTrac are acceptable.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信