Qiang Shen , Kun Shang , Chenchao Xiao , Hongzhao Tang , Taixia Wu , Changkun Wang
{"title":"A novel hyperspectral remote sensing estimation model for surface soil texture using AHSI/ZY1-02D satellite image","authors":"Qiang Shen , Kun Shang , Chenchao Xiao , Hongzhao Tang , Taixia Wu , Changkun Wang","doi":"10.1016/j.jag.2025.104453","DOIUrl":null,"url":null,"abstract":"<div><div>Soil texture is an essential attribute of soil structure, which plays an important role in evaluating soil fertility and carrying out agricultural production. This study developed a novel soil texture estimation model using ZiYuan-1-02D (ZY1-02D) satellite Advanced Hyperspectral Imager (AHSI), based on the mechanism of soil spectral mixing, that enables simultaneous estimation of the three soil texture attributes (clay, silt, and sand). Study area is located in the north-eastern region of China covering 1683.31 km<sup>2</sup>. To reduce data redundancy, we used correlation analysis and Competitive Adaptive Reweighted Sampling (CARS) algorithms to select sensitive spectral features of soil texture, and excluded spectral bands that are strongly influenced by other soil physicochemical properties. Finally, the spatial distribution map and classification map of soil texture have been generated for the study area. We also used AHSI/GaoFen-5 (GF-5) satellite images to further validate the generalizability of the model. The results suggest that the model can be used in the estimation of soil texture, and the developed novel model can effectively reflect the spatial distribution characteristics of surface soil texture attributes. The <em>R</em><sup>2</sup> values of all outcomes for inverting three texture attributes were larger than 0.5, with silt exhibiting the best estimation effect (<em>R</em><sup>2</sup> = 0.79, RMSE = 6.46 %, RPD = 2.19). The Max-divergence between the estimated surface soil texture attributes based on the two satellite images (AHSI/ZY1-02D and AHSI/GF-5) and the measured data were less than 4 %. The novel spectral mixture model of soil texture is suitable for spaceborne remote sensing data and has broad application prospects in surface soil texture mapping.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"138 ","pages":"Article 104453"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225001001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Soil texture is an essential attribute of soil structure, which plays an important role in evaluating soil fertility and carrying out agricultural production. This study developed a novel soil texture estimation model using ZiYuan-1-02D (ZY1-02D) satellite Advanced Hyperspectral Imager (AHSI), based on the mechanism of soil spectral mixing, that enables simultaneous estimation of the three soil texture attributes (clay, silt, and sand). Study area is located in the north-eastern region of China covering 1683.31 km2. To reduce data redundancy, we used correlation analysis and Competitive Adaptive Reweighted Sampling (CARS) algorithms to select sensitive spectral features of soil texture, and excluded spectral bands that are strongly influenced by other soil physicochemical properties. Finally, the spatial distribution map and classification map of soil texture have been generated for the study area. We also used AHSI/GaoFen-5 (GF-5) satellite images to further validate the generalizability of the model. The results suggest that the model can be used in the estimation of soil texture, and the developed novel model can effectively reflect the spatial distribution characteristics of surface soil texture attributes. The R2 values of all outcomes for inverting three texture attributes were larger than 0.5, with silt exhibiting the best estimation effect (R2 = 0.79, RMSE = 6.46 %, RPD = 2.19). The Max-divergence between the estimated surface soil texture attributes based on the two satellite images (AHSI/ZY1-02D and AHSI/GF-5) and the measured data were less than 4 %. The novel spectral mixture model of soil texture is suitable for spaceborne remote sensing data and has broad application prospects in surface soil texture mapping.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.