Comparative treatment planning of very high-energy electrons and photon volumetric modulated arc therapy: Optimising energy and beam parameters

IF 3.4 Q2 ONCOLOGY
Fabio S. D’Andrea , Robert Chuter , Adam H. Aitkenhead , Ranald I. MacKay , Roger M. Jones
{"title":"Comparative treatment planning of very high-energy electrons and photon volumetric modulated arc therapy: Optimising energy and beam parameters","authors":"Fabio S. D’Andrea ,&nbsp;Robert Chuter ,&nbsp;Adam H. Aitkenhead ,&nbsp;Ranald I. MacKay ,&nbsp;Roger M. Jones","doi":"10.1016/j.phro.2025.100732","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Very High-Energy Electron (VHEE) beams offer potential advantages over current clinical radiotherapy modalities due to their precise dose targeting and minimal peripheral dose spread, which is ideal for treating deep-seated tumours. To aid the development of clinical VHEE machines, this study adressed the need to identify optimum VHEE beam characteristics for tumours across various anatomical sites.</div></div><div><h3>Materials and methods</h3><div>VHEE treatment planning employed matRad, an open-source treatment planning system, by adapting its proton pencil beam scanning implementation. VHEE beam characteristics were generated using TOPAS Monte Carlo simulations. A total of 820 plans were retrospectively created and analysed across 10 pelvic and 12 thoracic cases and compared against clinical photon VMAT plans to identify the most optimal VHEE beam configuration and energy requirement.</div></div><div><h3>Results</h3><div>VHEE plans outperformed photon VMAT in sparing organs-at-risk (OARs) while maintaining or improving target coverage. While 150 MeV served as the threshold for effectively treating deep-seated sites, 200 MeV was identified as a more optimal energy in the pelvis for achieving the best balance of penetration and sparing abutting OARs. Lower energies (70–110 MeV) also benefitted mid-to-superficial disease in the lung cohort. Typically, VHEE plans required 3–5 fields, and resulted in notable dose reductions to OARs across treatment sites, including: 22.5% reduction in rectal D<sub>mean</sub>; 13.8% decrease in bladder D<sub>mean</sub>; 8.2% reduction in heart D<sub>mean</sub>; and a 24.4% decrease in lung V<sub>20Gy</sub>.</div></div><div><h3>Conclusion</h3><div>The study reinforces VHEE’s potential in clinical settings, emphasising the need for varied energy ranges to enhance treatment flexibility and effectiveness.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100732"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Very High-Energy Electron (VHEE) beams offer potential advantages over current clinical radiotherapy modalities due to their precise dose targeting and minimal peripheral dose spread, which is ideal for treating deep-seated tumours. To aid the development of clinical VHEE machines, this study adressed the need to identify optimum VHEE beam characteristics for tumours across various anatomical sites.

Materials and methods

VHEE treatment planning employed matRad, an open-source treatment planning system, by adapting its proton pencil beam scanning implementation. VHEE beam characteristics were generated using TOPAS Monte Carlo simulations. A total of 820 plans were retrospectively created and analysed across 10 pelvic and 12 thoracic cases and compared against clinical photon VMAT plans to identify the most optimal VHEE beam configuration and energy requirement.

Results

VHEE plans outperformed photon VMAT in sparing organs-at-risk (OARs) while maintaining or improving target coverage. While 150 MeV served as the threshold for effectively treating deep-seated sites, 200 MeV was identified as a more optimal energy in the pelvis for achieving the best balance of penetration and sparing abutting OARs. Lower energies (70–110 MeV) also benefitted mid-to-superficial disease in the lung cohort. Typically, VHEE plans required 3–5 fields, and resulted in notable dose reductions to OARs across treatment sites, including: 22.5% reduction in rectal Dmean; 13.8% decrease in bladder Dmean; 8.2% reduction in heart Dmean; and a 24.4% decrease in lung V20Gy.

Conclusion

The study reinforces VHEE’s potential in clinical settings, emphasising the need for varied energy ranges to enhance treatment flexibility and effectiveness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信