Microwave drying of basil (Ocimum sanctum) leaves with chitosan coating pretreatment: Bibliometric analysis and optimization

IF 3 Q2 ENGINEERING, CHEMICAL
Heri Septya Kusuma, Debora Engelien Christa Jaya, Nafisa Illiyanasafa, Endah Kurniasari, Kania Ludia Ikawati
{"title":"Microwave drying of basil (Ocimum sanctum) leaves with chitosan coating pretreatment: Bibliometric analysis and optimization","authors":"Heri Septya Kusuma,&nbsp;Debora Engelien Christa Jaya,&nbsp;Nafisa Illiyanasafa,&nbsp;Endah Kurniasari,&nbsp;Kania Ludia Ikawati","doi":"10.1016/j.dche.2025.100225","DOIUrl":null,"url":null,"abstract":"<div><div>This study optimized microwave drying of <em>Ocimum sanctum</em> (basil) leaves with chitosan coating pretreatment to improve drying efficiency and environmental impact. A bibliometric analysis revealed limited research on microwave-assisted drying methods combined with pretreatments. Using the Box-Behnken Design (BBD) within the Response Surface Methodology (RSM), the study evaluated the effects of drying time, microwave power, basil leaf mass, and chitosan concentration. Results showed that the optimum drying parameters were: drying time of 240 s, microwave power of 264.03 W, basil leaf mass of 14.36 g, and chitosan concentration of 1.39 %. Under these conditions, the moisture removal efficiency reached 61.6184 %, with relative energy consumption of 0.9698 kWh g<sup>-1</sup> and CO<sub>2</sub> emissions of 0.7758 kg g<sup>-1</sup>. The findings demonstrate that microwave drying with chitosan coating reduces energy consumption and environmental emissions while maintaining product quality.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100225"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study optimized microwave drying of Ocimum sanctum (basil) leaves with chitosan coating pretreatment to improve drying efficiency and environmental impact. A bibliometric analysis revealed limited research on microwave-assisted drying methods combined with pretreatments. Using the Box-Behnken Design (BBD) within the Response Surface Methodology (RSM), the study evaluated the effects of drying time, microwave power, basil leaf mass, and chitosan concentration. Results showed that the optimum drying parameters were: drying time of 240 s, microwave power of 264.03 W, basil leaf mass of 14.36 g, and chitosan concentration of 1.39 %. Under these conditions, the moisture removal efficiency reached 61.6184 %, with relative energy consumption of 0.9698 kWh g-1 and CO2 emissions of 0.7758 kg g-1. The findings demonstrate that microwave drying with chitosan coating reduces energy consumption and environmental emissions while maintaining product quality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信