Iterated reduced powers of collapsing algebras

IF 0.6 2区 数学 Q2 LOGIC
Miloš S. Kurilić
{"title":"Iterated reduced powers of collapsing algebras","authors":"Miloš S. Kurilić","doi":"10.1016/j.apal.2025.103567","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><mrow><mi>rp</mi></mrow><mo>(</mo><mi>B</mi><mo>)</mo></math></span> denotes the reduced power <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>ω</mi></mrow></msup><mo>/</mo><mi>Φ</mi></math></span> of a Boolean algebra <span><math><mi>B</mi></math></span>, where Φ is the Fréchet filter on <em>ω</em>. We investigate iterated reduced powers (<span><math><msup><mrow><mi>rp</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mi>B</mi></math></span> and <span><math><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mrow><mi>rp</mi></mrow><mo>(</mo><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>)</mo></math></span>) of collapsing algebras and our main intention is to classify the algebras <span><math><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mrow><mi>Col</mi></mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>κ</mi><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, up to isomorphism of their Boolean completions. In particular, assuming that SCH and <span><math><mi>h</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> hold, we show that for any cardinals <span><math><mi>λ</mi><mo>≥</mo><mi>ω</mi></math></span> and <span><math><mi>κ</mi><mo>≥</mo><mn>2</mn></math></span> such that <span><math><mi>κ</mi><mi>λ</mi><mo>&gt;</mo><mi>ω</mi></math></span> and <span><math><mrow><mi>cf</mi></mrow><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mi>c</mi></math></span> we have <span><math><mrow><mi>ro</mi></mrow><mo>(</mo><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mrow><mi>Col</mi></mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>κ</mi><mo>)</mo><mo>)</mo><mo>)</mo><mo>≅</mo><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>ω</mi></mrow></msup><mo>)</mo></math></span>, for each <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>; more precisely,<span><span><span><math><mrow><mi>ro</mi></mrow><mo>(</mo><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mrow><mi>Col</mi></mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>κ</mi><mo>)</mo><mo>)</mo><mo>)</mo><mo>≅</mo><mrow><mo>{</mo><mtable><mtr><mtd><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mtext> if </mtext><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>≤</mo><mi>c</mi><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mtext> if </mtext><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>&gt;</mo><mi>c</mi><mo>∧</mo><mrow><mi>cf</mi></mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>)</mo><mo>&gt;</mo><mi>ω</mi><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mtext> if </mtext><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>&gt;</mo><mi>c</mi><mo>∧</mo><mrow><mi>cf</mi></mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo>&lt;</mo><mi>λ</mi></mrow></msup><mo>)</mo><mo>=</mo><mi>ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> If <span><math><mi>b</mi><mo>=</mo><mi>d</mi></math></span> and <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>♯</mo></mrow></msup></math></span> does not exist, then the same holds whenever <span><math><mrow><mi>cf</mi></mrow><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>ω</mi></math></span>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 6","pages":"Article 103567"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

rp(B) denotes the reduced power Bω/Φ of a Boolean algebra B, where Φ is the Fréchet filter on ω. We investigate iterated reduced powers (rp0(B)=B and rpn+1(B)=rp(rpn(B))) of collapsing algebras and our main intention is to classify the algebras rpn(Col(λ,κ)), n1, up to isomorphism of their Boolean completions. In particular, assuming that SCH and h=ω1 hold, we show that for any cardinals λω and κ2 such that κλ>ω and cf(λ)c we have ro(rpn(Col(λ,κ)))Col(ω1,(κ<λ)ω), for each n1; more precisely,ro(rpn(Col(λ,κ))){Col(ω1,c), if κ<λc;Col(ω1,κ<λ), if κ<λ>ccf(κ<λ)>ω;Col(ω1,(κ<λ)+), if κ<λ>ccf(κ<λ)=ω. If b=d and 0 does not exist, then the same holds whenever cf(λ)=ω.
塌缩代数的迭代约简幂
rp(B)表示布尔代数B的约简幂Bω/Φ,其中Φ是ω上的fr切特滤波器。我们研究了坍缩代数的迭代约简幂(r0 (B)=B和rpn+1(B)=rp(rpn(B))),我们的主要目的是对rpn(Col(λ,κ)), n≥1,直至其布尔补全的同构的代数进行分类。特别地,假设SCH和h=ω1成立,我们证明对于任意基数λ≥ω和κ≥2,使得κλ>;ω和cf(λ)≤c,我们有ro(rpn(Col(λ,κ))) (Col(λ,κ))) (Col(ω1,(κ<λ)ω),对于每个n≥1;更准确地说,ro (rpn (Col(κλ)))≅{坳(ω1 c),如果κ& lt;λ≤c;坳(ω1,κ& lt;λ),如果κ& lt;λ在c∧cf(κ& lt;λ)在ω;坳(ω1,(κ& lt;λ)+),如果κ& lt;λ在c∧cf(κ& lt;λ)=ω。若b=d且0 #不存在,则无论cf(λ)=ω,均成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信