{"title":"Iterated reduced powers of collapsing algebras","authors":"Miloš S. Kurilić","doi":"10.1016/j.apal.2025.103567","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><mrow><mi>rp</mi></mrow><mo>(</mo><mi>B</mi><mo>)</mo></math></span> denotes the reduced power <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>ω</mi></mrow></msup><mo>/</mo><mi>Φ</mi></math></span> of a Boolean algebra <span><math><mi>B</mi></math></span>, where Φ is the Fréchet filter on <em>ω</em>. We investigate iterated reduced powers (<span><math><msup><mrow><mi>rp</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mi>B</mi></math></span> and <span><math><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mrow><mi>rp</mi></mrow><mo>(</mo><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>)</mo></math></span>) of collapsing algebras and our main intention is to classify the algebras <span><math><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mrow><mi>Col</mi></mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>κ</mi><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, up to isomorphism of their Boolean completions. In particular, assuming that SCH and <span><math><mi>h</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> hold, we show that for any cardinals <span><math><mi>λ</mi><mo>≥</mo><mi>ω</mi></math></span> and <span><math><mi>κ</mi><mo>≥</mo><mn>2</mn></math></span> such that <span><math><mi>κ</mi><mi>λ</mi><mo>></mo><mi>ω</mi></math></span> and <span><math><mrow><mi>cf</mi></mrow><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mi>c</mi></math></span> we have <span><math><mrow><mi>ro</mi></mrow><mo>(</mo><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mrow><mi>Col</mi></mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>κ</mi><mo>)</mo><mo>)</mo><mo>)</mo><mo>≅</mo><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>ω</mi></mrow></msup><mo>)</mo></math></span>, for each <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>; more precisely,<span><span><span><math><mrow><mi>ro</mi></mrow><mo>(</mo><msup><mrow><mi>rp</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mrow><mi>Col</mi></mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>κ</mi><mo>)</mo><mo>)</mo><mo>)</mo><mo>≅</mo><mrow><mo>{</mo><mtable><mtr><mtd><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mtext> if </mtext><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>≤</mo><mi>c</mi><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mtext> if </mtext><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>></mo><mi>c</mi><mo>∧</mo><mrow><mi>cf</mi></mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>)</mo><mo>></mo><mi>ω</mi><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mi>Col</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mtext> if </mtext><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>></mo><mi>c</mi><mo>∧</mo><mrow><mi>cf</mi></mrow><mo>(</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>λ</mi></mrow></msup><mo>)</mo><mo>=</mo><mi>ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> If <span><math><mi>b</mi><mo>=</mo><mi>d</mi></math></span> and <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>♯</mo></mrow></msup></math></span> does not exist, then the same holds whenever <span><math><mrow><mi>cf</mi></mrow><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>ω</mi></math></span>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 6","pages":"Article 103567"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
denotes the reduced power of a Boolean algebra , where Φ is the Fréchet filter on ω. We investigate iterated reduced powers ( and ) of collapsing algebras and our main intention is to classify the algebras , , up to isomorphism of their Boolean completions. In particular, assuming that SCH and hold, we show that for any cardinals and such that and we have , for each ; more precisely, If and does not exist, then the same holds whenever .
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.