Closed-Loop Recyclable Solid-State Polymer Electrolytes Enabled by Reversible Lithium Salt Catalysis

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pei Chen, Shunjie Liu*, Hao Zhou, Shuo Yan, Dongxuan Zhang, Xuan Pang, Xuesi Chen and Xianhong Wang*, 
{"title":"Closed-Loop Recyclable Solid-State Polymer Electrolytes Enabled by Reversible Lithium Salt Catalysis","authors":"Pei Chen,&nbsp;Shunjie Liu*,&nbsp;Hao Zhou,&nbsp;Shuo Yan,&nbsp;Dongxuan Zhang,&nbsp;Xuan Pang,&nbsp;Xuesi Chen and Xianhong Wang*,&nbsp;","doi":"10.1021/jacs.4c1703510.1021/jacs.4c17035","DOIUrl":null,"url":null,"abstract":"<p >The rapid expansion in lithium battery production and disposal presents considerable sustainability challenges, emphasizing the critical need for recycling. However, current methods predominantly focus on metals from cathodes, while electrolytes have rarely been recycled. Here, we propose an innovative closed-loop design for solid polymer electrolytes (SPEs), enabled by reversible catalysis of lithium bis(trifluoromethane) sulfonimide (LiTFSI) in both polymerization and depolymerization. The formation of a hydrogen-bonded adduct between TFSI<sup>–</sup> and alcohol initiates the in situ ring-opening polymerization of Li<sup>+</sup>-activated trimethylene carbonate (TMC), generating well-defined SPEs. With delicate structural optimization, the SPE achieves an outstanding ionic conductivity of 1.62 × 10<sup>–3</sup> S cm<sup>–1</sup> at room temperature with robust high-voltage stability up to 4.7 V. The assembled Li||NCM811 demonstrates promising cycling stability with 88% capacity retention over 100 cycles. Upon end-of-life, LiTFSI facilitates selective depolymerization of the polycarbonate-based SPE at 180 °C without introducing external catalysts, recovering both TMC monomer (&gt;90%) and LiTFSI (&gt;98%) for reuse. This work highlights a significant advance in closed-loop recyclable SPEs and a vital step toward sustainable lithium battery technology.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 9","pages":"7624–7633 7624–7633"},"PeriodicalIF":15.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c17035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion in lithium battery production and disposal presents considerable sustainability challenges, emphasizing the critical need for recycling. However, current methods predominantly focus on metals from cathodes, while electrolytes have rarely been recycled. Here, we propose an innovative closed-loop design for solid polymer electrolytes (SPEs), enabled by reversible catalysis of lithium bis(trifluoromethane) sulfonimide (LiTFSI) in both polymerization and depolymerization. The formation of a hydrogen-bonded adduct between TFSI and alcohol initiates the in situ ring-opening polymerization of Li+-activated trimethylene carbonate (TMC), generating well-defined SPEs. With delicate structural optimization, the SPE achieves an outstanding ionic conductivity of 1.62 × 10–3 S cm–1 at room temperature with robust high-voltage stability up to 4.7 V. The assembled Li||NCM811 demonstrates promising cycling stability with 88% capacity retention over 100 cycles. Upon end-of-life, LiTFSI facilitates selective depolymerization of the polycarbonate-based SPE at 180 °C without introducing external catalysts, recovering both TMC monomer (>90%) and LiTFSI (>98%) for reuse. This work highlights a significant advance in closed-loop recyclable SPEs and a vital step toward sustainable lithium battery technology.

Abstract Image

可逆锂盐催化制备闭环可回收固态聚合物电解质
锂电池生产和处置的快速扩张带来了相当大的可持续性挑战,强调了对回收的迫切需求。然而,目前的方法主要集中在阴极上的金属,而电解质很少被回收利用。在这里,我们提出了一种创新的固体聚合物电解质(spe)闭环设计,通过双(三氟甲烷)磺酰亚胺锂(LiTFSI)的可逆催化实现聚合和解聚。TFSI -和醇之间氢键加合物的形成引发了Li+活化的碳酸三亚甲基(TMC)的原位开环聚合,生成了定义明确的spe。经过精细的结构优化,SPE在室温下的离子电导率为1.62 × 10-3 S cm-1,高压稳定性高达4.7 V。组装的Li||NCM811具有良好的循环稳定性,在100次循环中保持88%的容量。在使用寿命结束时,LiTFSI可以在180°C下促进聚碳酸酯基SPE的选择性解聚,而无需引入外部催化剂,回收TMC单体(>90%)和LiTFSI (>98%)进行再利用。这项工作突出了闭环可回收spe的重大进步,也是朝着可持续锂电池技术迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信