{"title":"RealFusion: A reliable deep learning-based spatiotemporal fusion framework for generating seamless fine-resolution imagery","authors":"Dizhou Guo, Zhenhong Li, Xu Gao, Meiling Gao, Chen Yu, Chenglong Zhang, Wenzhong Shi","doi":"10.1016/j.rse.2025.114689","DOIUrl":null,"url":null,"abstract":"Spatiotemporal fusion of multisource remote sensing data offers a viable way for precise and dynamic Earth monitoring. However, existing methods struggle with reliable spatiotemporal fusion in two commonly occurring yet complex scenarios: drastic surface changes, such as those caused by natural disasters and human activities, and poor image quality, which caused by thick cloud cover, cloud shadows, haze and noise. To address these challenges, this study proposes a Reliable deep learning-based spatiotemporal Fusion framework (RealFusion), designed to blend Landsat and MODIS imagery to generate daily seamless Landsat-like imagery. ReadFusion enhances fusion reliability through several advancements: (1) integrating diverse input data with complementary information, (2) implementing task decoupled architectures, (3) developing advanced restoration and fusion networks, (4) adopting adaptive training strategy, (5) and establishing a comprehensive accuracy assessment framework. Extensive experiments, comprising 25 trials in three distinct areas, demonstrate that RealFusion outperforms four methods proposed in recent years (Object-Level Hybrid SpatioTemporal Fusion Method, OL-HSTFM; Enhanced Deep Convolutional Spatiotemporal Fusion Network, EDCSTFN; Generative Adversarial Network-based SpatioTemporal Fusion Model, GAN-STFM; and Multilevel Feature Fusion with Generative Adversarial Network, MLFF-GAN). Notably, RealFusion is the only model capable of robustly and accurately reconstructing information of areas with drastic surface changes and poor image quality in experiments. RealFusion, thus, facilitates the reliable reconstruction of high-quality images in complex scenarios, marking a meaningful advancement in spatiotemporal fusion technique.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"7 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2025.114689","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spatiotemporal fusion of multisource remote sensing data offers a viable way for precise and dynamic Earth monitoring. However, existing methods struggle with reliable spatiotemporal fusion in two commonly occurring yet complex scenarios: drastic surface changes, such as those caused by natural disasters and human activities, and poor image quality, which caused by thick cloud cover, cloud shadows, haze and noise. To address these challenges, this study proposes a Reliable deep learning-based spatiotemporal Fusion framework (RealFusion), designed to blend Landsat and MODIS imagery to generate daily seamless Landsat-like imagery. ReadFusion enhances fusion reliability through several advancements: (1) integrating diverse input data with complementary information, (2) implementing task decoupled architectures, (3) developing advanced restoration and fusion networks, (4) adopting adaptive training strategy, (5) and establishing a comprehensive accuracy assessment framework. Extensive experiments, comprising 25 trials in three distinct areas, demonstrate that RealFusion outperforms four methods proposed in recent years (Object-Level Hybrid SpatioTemporal Fusion Method, OL-HSTFM; Enhanced Deep Convolutional Spatiotemporal Fusion Network, EDCSTFN; Generative Adversarial Network-based SpatioTemporal Fusion Model, GAN-STFM; and Multilevel Feature Fusion with Generative Adversarial Network, MLFF-GAN). Notably, RealFusion is the only model capable of robustly and accurately reconstructing information of areas with drastic surface changes and poor image quality in experiments. RealFusion, thus, facilitates the reliable reconstruction of high-quality images in complex scenarios, marking a meaningful advancement in spatiotemporal fusion technique.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.