High-Energy Density Li-Ion Battery Cathode Using Only Industrial Elements

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eshaan S. Patheria, Pedro Guzman, Leah S. Soldner, Michelle D. Qian, Colin T. Morrell, Seong Shik Kim, Kyle Hunady, Elena R. Priesen Reis, Nicholas V. Dulock, James R. Neilson, Johanna Nelson Weker, Brent Fultz, Kimberly A. See
{"title":"High-Energy Density Li-Ion Battery Cathode Using Only Industrial Elements","authors":"Eshaan S. Patheria, Pedro Guzman, Leah S. Soldner, Michelle D. Qian, Colin T. Morrell, Seong Shik Kim, Kyle Hunady, Elena R. Priesen Reis, Nicholas V. Dulock, James R. Neilson, Johanna Nelson Weker, Brent Fultz, Kimberly A. See","doi":"10.1021/jacs.4c18440","DOIUrl":null,"url":null,"abstract":"Li-ion batteries are crucial for the global energy transition to renewables; however, their scalability is limited by the supply of key elements used in commercial cathodes (e.g., Ni, Mn, Co, P). Therefore, there is an urgent need for next-generation cathodes composed of widely available and industrially scalable elements. Here, we introduce a Li-rich cathode based on the known material Li<sub>2</sub>FeS<sub>2</sub>, composed of low-cost elements (Al, Fe, S) that are globally mined and refined at an industrial scale. The substitution of redox-inactive Al<sup>3+</sup> for Fe<sup>2+</sup> achieves remarkably high degrees of anion redox, which, in turn, yields high gravimetric capacity (≈450 mAh·g<sup>–1</sup>) and energy density (≳1000 Wh·kg<sup>–1</sup>). We show that Al<sup>3+</sup> enables high degrees of delithiation by stabilizing the delithiated state, suppressing phase transformations that would otherwise prevent deep delithiation and extensive anion redox. This mechanistic insight offers new possibilities for developing scalable, next-generation Li-ion battery cathodes to meet pressing societal needs.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"16 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li-ion batteries are crucial for the global energy transition to renewables; however, their scalability is limited by the supply of key elements used in commercial cathodes (e.g., Ni, Mn, Co, P). Therefore, there is an urgent need for next-generation cathodes composed of widely available and industrially scalable elements. Here, we introduce a Li-rich cathode based on the known material Li2FeS2, composed of low-cost elements (Al, Fe, S) that are globally mined and refined at an industrial scale. The substitution of redox-inactive Al3+ for Fe2+ achieves remarkably high degrees of anion redox, which, in turn, yields high gravimetric capacity (≈450 mAh·g–1) and energy density (≳1000 Wh·kg–1). We show that Al3+ enables high degrees of delithiation by stabilizing the delithiated state, suppressing phase transformations that would otherwise prevent deep delithiation and extensive anion redox. This mechanistic insight offers new possibilities for developing scalable, next-generation Li-ion battery cathodes to meet pressing societal needs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信