CardioGenAI: a machine learning-based framework for re-engineering drugs for reduced hERG liability

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gregory W. Kyro, Matthew T. Martin, Eric D. Watt, Victor S. Batista
{"title":"CardioGenAI: a machine learning-based framework for re-engineering drugs for reduced hERG liability","authors":"Gregory W. Kyro,&nbsp;Matthew T. Martin,&nbsp;Eric D. Watt,&nbsp;Victor S. Batista","doi":"10.1186/s13321-025-00976-8","DOIUrl":null,"url":null,"abstract":"<div><p>The link between in vitro hERG ion channel inhibition and subsequent in vivo QT interval prolongation, a critical risk factor for the development of arrythmias such as Torsade de Pointes, is so well established that in vitro hERG activity alone is often sufficient to end the development of an otherwise promising drug candidate. It is therefore of tremendous interest to develop advanced methods for identifying hERG-active compounds in the early stages of drug development, as well as for proposing redesigned compounds with reduced hERG liability and preserved primary pharmacology. In this work, we present CardioGenAI, a machine learning-based framework for re-engineering both developmental and commercially available drugs for reduced hERG activity while preserving their pharmacological activity. The framework incorporates novel state-of-the-art discriminative models for predicting hERG channel activity, as well as activity against the voltage-gated Na<sub>V</sub>1.5 and Ca<sub>V</sub>1.2 channels due to their potential implications in modulating the arrhythmogenic potential induced by hERG channel blockade. We applied the complete framework to pimozide, an FDA-approved antipsychotic agent that demonstrates high affinity to the hERG channel, and generated 100 refined candidates. Remarkably, among the candidates is fluspirilene, a compound which is of the same class of drugs as pimozide (diphenylmethanes) and therefore has similar pharmacological activity, yet exhibits over 700-fold weaker binding to hERG. Furthermore, we demonstrated the framework's ability to optimize hERG, Na<sub>V</sub>1.5 and Ca<sub>V</sub>1.2 profiles of multiple FDA-approved compounds while maintaining the physicochemical nature of the original drugs. We envision that this method can effectively be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug development programs that have stalled due to hERG-related safety concerns. Additionally, the discriminative models can also serve independently as effective components of virtual screening pipelines. We have made all of our software open-source at https://github.com/gregory-kyro/CardioGenAI to facilitate integration of the CardioGenAI framework for molecular hypothesis generation into drug discovery workflows.</p><p><b>Scientific contribution</b></p><p>This work introduces CardioGenAI, an open-source machine learning-based framework designed to re-engineer drugs for reduced hERG liability while preserving their pharmacological activity. The complete CardioGenAI framework can be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug discovery programs facing hERG-related challenges. In addition, the framework incorporates novel state-of-the-art discriminative models for predicting hERG, Na<sub>V</sub>1.5 and Ca<sub>V</sub>1.2 channel activity, which can function independently as effective components of virtual screening pipelines.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00976-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00976-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The link between in vitro hERG ion channel inhibition and subsequent in vivo QT interval prolongation, a critical risk factor for the development of arrythmias such as Torsade de Pointes, is so well established that in vitro hERG activity alone is often sufficient to end the development of an otherwise promising drug candidate. It is therefore of tremendous interest to develop advanced methods for identifying hERG-active compounds in the early stages of drug development, as well as for proposing redesigned compounds with reduced hERG liability and preserved primary pharmacology. In this work, we present CardioGenAI, a machine learning-based framework for re-engineering both developmental and commercially available drugs for reduced hERG activity while preserving their pharmacological activity. The framework incorporates novel state-of-the-art discriminative models for predicting hERG channel activity, as well as activity against the voltage-gated NaV1.5 and CaV1.2 channels due to their potential implications in modulating the arrhythmogenic potential induced by hERG channel blockade. We applied the complete framework to pimozide, an FDA-approved antipsychotic agent that demonstrates high affinity to the hERG channel, and generated 100 refined candidates. Remarkably, among the candidates is fluspirilene, a compound which is of the same class of drugs as pimozide (diphenylmethanes) and therefore has similar pharmacological activity, yet exhibits over 700-fold weaker binding to hERG. Furthermore, we demonstrated the framework's ability to optimize hERG, NaV1.5 and CaV1.2 profiles of multiple FDA-approved compounds while maintaining the physicochemical nature of the original drugs. We envision that this method can effectively be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug development programs that have stalled due to hERG-related safety concerns. Additionally, the discriminative models can also serve independently as effective components of virtual screening pipelines. We have made all of our software open-source at https://github.com/gregory-kyro/CardioGenAI to facilitate integration of the CardioGenAI framework for molecular hypothesis generation into drug discovery workflows.

Scientific contribution

This work introduces CardioGenAI, an open-source machine learning-based framework designed to re-engineer drugs for reduced hERG liability while preserving their pharmacological activity. The complete CardioGenAI framework can be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug discovery programs facing hERG-related challenges. In addition, the framework incorporates novel state-of-the-art discriminative models for predicting hERG, NaV1.5 and CaV1.2 channel activity, which can function independently as effective components of virtual screening pipelines.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信