{"title":"Attacks and Defenses for Generative Diffusion Models: A Comprehensive Survey","authors":"Vu Tuan Truong, Luan Ba Dang, Long Bao Le","doi":"10.1145/3721479","DOIUrl":null,"url":null,"abstract":"Diffusion models (DMs) have achieved state-of-the-art performance on various generative tasks such as image synthesis, text-to-image, and text-guided image-to-image generation. However, the more powerful the DMs, the more harmful they can potentially be. Recent studies have shown that DMs are prone to a wide range of attacks, including adversarial attacks, membership inference attacks, backdoor injection, and various multi-modal threats. Since numerous pre-trained DMs are published widely on the Internet, potential threats from these attacks are especially detrimental to the society, making DM-related security a topic worthy of investigation. Therefore, in this paper, we conduct a comprehensive survey on the security aspect of DMs, focusing on various attack and defense methods for DMs. First, we present crucial knowledge of DMs with five main types of DMs, including denoising diffusion probabilistic models, denoising diffusion implicit models, noise conditioned score networks, stochastic differential equations, and multi-modal conditional DMs. We provide a comprehensive survey of recent works investigating different types of attacks that exploit the vulnerabilities of DMs. Then, we thoroughly review potential countermeasures to mitigate each of the presented threats. Finally, we discuss open challenges of DM-related security and describe potential research directions for this topic.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"10 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3721479","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion models (DMs) have achieved state-of-the-art performance on various generative tasks such as image synthesis, text-to-image, and text-guided image-to-image generation. However, the more powerful the DMs, the more harmful they can potentially be. Recent studies have shown that DMs are prone to a wide range of attacks, including adversarial attacks, membership inference attacks, backdoor injection, and various multi-modal threats. Since numerous pre-trained DMs are published widely on the Internet, potential threats from these attacks are especially detrimental to the society, making DM-related security a topic worthy of investigation. Therefore, in this paper, we conduct a comprehensive survey on the security aspect of DMs, focusing on various attack and defense methods for DMs. First, we present crucial knowledge of DMs with five main types of DMs, including denoising diffusion probabilistic models, denoising diffusion implicit models, noise conditioned score networks, stochastic differential equations, and multi-modal conditional DMs. We provide a comprehensive survey of recent works investigating different types of attacks that exploit the vulnerabilities of DMs. Then, we thoroughly review potential countermeasures to mitigate each of the presented threats. Finally, we discuss open challenges of DM-related security and describe potential research directions for this topic.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.