{"title":"Distributed Stochastic Gradient Descent With Staleness: A Stochastic Delay Differential Equation Based Framework","authors":"Siyuan Yu;Wei Chen;H. Vincent Poor","doi":"10.1109/TSP.2025.3546574","DOIUrl":null,"url":null,"abstract":"Distributed stochastic gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning. However, stragglers and limited bandwidth may induce random computational/ communication delays, thereby severely hindering the learning process. Therefore, how to accelerate asynchronous SGD (ASGD) by efficiently scheduling multiple workers is an important issue. In this paper, a unified framework is presented to analyze and optimize the convergence of ASGD based on stochastic delay differential equations (SDDEs) and the Poisson approximation of aggregated gradient arrivals. In particular, we present the run time and staleness of distributed SGD without a memorylessness assumption on the computation times. Given the learning rate, we reveal the relevant SDDE's damping coefficient and its delay statistics, as functions of the number of activated clients, staleness threshold, the eigenvalues of the Hessian matrix of the objective function, and the overall computational/communication delay. The formulated SDDE allows us to present both the distributed SGD's convergence condition and speed by calculating its characteristic roots, thereby optimizing the scheduling policies for asynchronous/event-triggered SGD. It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness. Moreover, a small degree of staleness does not necessarily slow down the convergence, while a large degree of staleness will result in the divergence of distributed SGD. Numerical results demonstrate the potential of our SDDE framework, even in complex learning tasks with non-convex objective functions.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1708-1726"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10909566/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed stochastic gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning. However, stragglers and limited bandwidth may induce random computational/ communication delays, thereby severely hindering the learning process. Therefore, how to accelerate asynchronous SGD (ASGD) by efficiently scheduling multiple workers is an important issue. In this paper, a unified framework is presented to analyze and optimize the convergence of ASGD based on stochastic delay differential equations (SDDEs) and the Poisson approximation of aggregated gradient arrivals. In particular, we present the run time and staleness of distributed SGD without a memorylessness assumption on the computation times. Given the learning rate, we reveal the relevant SDDE's damping coefficient and its delay statistics, as functions of the number of activated clients, staleness threshold, the eigenvalues of the Hessian matrix of the objective function, and the overall computational/communication delay. The formulated SDDE allows us to present both the distributed SGD's convergence condition and speed by calculating its characteristic roots, thereby optimizing the scheduling policies for asynchronous/event-triggered SGD. It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness. Moreover, a small degree of staleness does not necessarily slow down the convergence, while a large degree of staleness will result in the divergence of distributed SGD. Numerical results demonstrate the potential of our SDDE framework, even in complex learning tasks with non-convex objective functions.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.