Wenya Yuan, Fengge Yao, Yijing Liu, Hongci Xiao, Siheng Sun, Cheng Jiang, Yi An, Ningning Chen, Lichao Huang, Mengzhu Lu, Jin Zhang
{"title":"Identification of the xyloglucan endotransglycosylase/hydrolase genes and the role of <i>PagXTH12</i> in drought resistance in poplar.","authors":"Wenya Yuan, Fengge Yao, Yijing Liu, Hongci Xiao, Siheng Sun, Cheng Jiang, Yi An, Ningning Chen, Lichao Huang, Mengzhu Lu, Jin Zhang","doi":"10.48130/forres-0024-0036","DOIUrl":null,"url":null,"abstract":"<p><p>The xyloglucan endotransglycosylase/hydrolase (XTH) gene family plays a crucial role in plant cell wall remodeling, facilitating growth and structural changes. However, the divergence of paralogous genes among different species of <i>Populus</i> remains inadequately understood. This study investigates the phylogenetic relationships and expression characteristics of <i>XTH</i> genes in two <i>Populus</i> species: <i>Populus trichocarpa</i> and <i>Populus alba × P. glandulosa</i> '84K'. Forty-one <i>XTHs</i> were identified in <i>P. trichocarpa</i> and 38 and 33 members in the subgenome A and G of '84K' poplar, respectively. Gene expression analysis demonstrated differences among paralogous genes within the same subgenome and between orthologous genes across species, likely influenced by variations in promoter regions. Notably, <i>XTH12</i> showed a specific response to drought stress among various abiotic stresses. In a population of 549 <i>Populus</i> individuals, functional SNPs in <i>XTH12</i>'s coding region did not affect its conserved ExDxE catalytic site, highlighting its irreplaceable function. Furthermore, validation through qRT-PCR and <i>ProPagXTH12::GUS</i> activity, alongside <i>PagXTH12</i>-overexpression poplar lines, substantiated the role of PagXTH12 in modulating the balance between plant biomass and drought resistance. Overall, this research provides valuable insights into the biological functions of XTHs in plant environmental adaptability and offers strategies for targeted regulation of tree growth and stress resistance.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e039"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48130/forres-0024-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The xyloglucan endotransglycosylase/hydrolase (XTH) gene family plays a crucial role in plant cell wall remodeling, facilitating growth and structural changes. However, the divergence of paralogous genes among different species of Populus remains inadequately understood. This study investigates the phylogenetic relationships and expression characteristics of XTH genes in two Populus species: Populus trichocarpa and Populus alba × P. glandulosa '84K'. Forty-one XTHs were identified in P. trichocarpa and 38 and 33 members in the subgenome A and G of '84K' poplar, respectively. Gene expression analysis demonstrated differences among paralogous genes within the same subgenome and between orthologous genes across species, likely influenced by variations in promoter regions. Notably, XTH12 showed a specific response to drought stress among various abiotic stresses. In a population of 549 Populus individuals, functional SNPs in XTH12's coding region did not affect its conserved ExDxE catalytic site, highlighting its irreplaceable function. Furthermore, validation through qRT-PCR and ProPagXTH12::GUS activity, alongside PagXTH12-overexpression poplar lines, substantiated the role of PagXTH12 in modulating the balance between plant biomass and drought resistance. Overall, this research provides valuable insights into the biological functions of XTHs in plant environmental adaptability and offers strategies for targeted regulation of tree growth and stress resistance.