Hyperreflexia after corticospinal tract lesion reflects 1A afferent circuit changes not increased KCC2 hyperexcitability.

Thelma Bethea, Temitope Adegbenro, John H Martin
{"title":"Hyperreflexia after corticospinal tract lesion reflects 1A afferent circuit changes not increased KCC2 hyperexcitability.","authors":"Thelma Bethea, Temitope Adegbenro, John H Martin","doi":"10.1101/2025.02.21.639555","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperreflexia is a consequence of spinal cord injury (SCI) and motor system lesions in the brain Two major mechanisms underpinning hyperreflexia have been reported: proprioceptive afferent (PA) circuit changes produced by 1A fiber sprouting, which could enhance reflex signaling, together with reduced GABAergic inhibitory presynaptic regulation (GABApre); and increased intrinsic motor neuron excitability, for example, produced by reduced motor neuron membrane-bound potassium-chloride co-transporter2 (KCC2). Here we examine how selective unilateral CST injury in the medullary pyramid (PTX), which eliminates the CST from one hemisphere, allows for specific investigation of the different mechanisms to determine their contributions to hyperreflexia. We used rate-dependent depression (RDD) of the Hoffmann (H)-reflex for the forelimb and hindlimb 5th-digit abductor muscles to assess hyperreflexia on both the contra- and ipsilesional sides. We compared RDD in naive and unilateral-PTX rats at 7-dpi and 42-dpi, supplemented with additional timepoints to examine hyperreflexia development. Immunohistochemistry was used to identify PA synapses (VGlut1), GABA presynaptic boutons (GABApre), motor neurons (ChAT), and to measure KCC2. Following unilateral PTX, we observed significant hyperreflexia in the contralesional forelimb only. Membrane-bound KCC2 was unchanged in contralesional cervical motor neurons. Whereas both cervical and lumbar motor neurons showed increased PA sprouting contralesionally, there was a concomitant increase in GABApre terminals for the lumbar not cervical cord, which associated with a normal hindlimb H-reflex. Our findings show that KCC2 is disassociated from hyperreflexia in the uniPTX model. Instead, forelimb hyperreflexia can be explained by cervical motor neuron PA sprouting and an uncompensated GABApre regulation.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.21.639555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperreflexia is a consequence of spinal cord injury (SCI) and motor system lesions in the brain Two major mechanisms underpinning hyperreflexia have been reported: proprioceptive afferent (PA) circuit changes produced by 1A fiber sprouting, which could enhance reflex signaling, together with reduced GABAergic inhibitory presynaptic regulation (GABApre); and increased intrinsic motor neuron excitability, for example, produced by reduced motor neuron membrane-bound potassium-chloride co-transporter2 (KCC2). Here we examine how selective unilateral CST injury in the medullary pyramid (PTX), which eliminates the CST from one hemisphere, allows for specific investigation of the different mechanisms to determine their contributions to hyperreflexia. We used rate-dependent depression (RDD) of the Hoffmann (H)-reflex for the forelimb and hindlimb 5th-digit abductor muscles to assess hyperreflexia on both the contra- and ipsilesional sides. We compared RDD in naive and unilateral-PTX rats at 7-dpi and 42-dpi, supplemented with additional timepoints to examine hyperreflexia development. Immunohistochemistry was used to identify PA synapses (VGlut1), GABA presynaptic boutons (GABApre), motor neurons (ChAT), and to measure KCC2. Following unilateral PTX, we observed significant hyperreflexia in the contralesional forelimb only. Membrane-bound KCC2 was unchanged in contralesional cervical motor neurons. Whereas both cervical and lumbar motor neurons showed increased PA sprouting contralesionally, there was a concomitant increase in GABApre terminals for the lumbar not cervical cord, which associated with a normal hindlimb H-reflex. Our findings show that KCC2 is disassociated from hyperreflexia in the uniPTX model. Instead, forelimb hyperreflexia can be explained by cervical motor neuron PA sprouting and an uncompensated GABApre regulation.

皮质脊髓束病变后的高反射反映1A传入回路的改变,而不是KCC2高兴奋性的增加。
反射亢进、痉挛和熟练运动功能丧失是脊髓损伤(SCI)的后果。据报道,高反射的多种潜在机制包括:本体感觉传入(PA)芽化异常,可以增强反射信号;gaba能抑制1A末端突触前调节(GABApre)降低;以及运动神经元膜结合氯化钾共转运蛋白#2 (KCC2)减少所产生的兴奋性增加,这一研究仅在脊髓损伤和双侧CST损伤后进行。在这里,我们研究了选择性CST损伤如何允许对不同机制进行具体研究,以确定它们对高反射的贡献。采用前肢和后肢第5指外展肌的霍夫曼(H)反射率依赖性抑制(RDD)来评估反射亢进。我们比较了naïve和单侧ptx动物在7 dpi和42 dpi时的RDD,并辅以额外的定时测试来检查高反射发展的时间过程。免疫组化检测PA突触(VGlut1)、GABApre (GABApre)、运动神经元(ChAT)和KCC2。在单侧PTX手术后,我们仅在对侧前肢观察到明显的反射过度。膜结合KCC2在对侧颈运动神经元中没有变化。尽管颈椎和腰椎运动神经元均显示PA对侧萌发增加,但在腰椎而非颈髓中,GABApre终末同时增加。我们的研究结果表明,在uniPTX模型中,KCC2与高反射分离。相反,前肢反射亢进可以通过颈运动神经元PA的萌芽和GABApre的无代偿调节来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信